Wielicki, B. A., B. R. Barkstrom, E. F. Harrison, R. B. Lee III, G. L. Smith, and J. E. Cooper, 1996: Clouds and the Earth’s Radiant Energy System (CERES): An Earth Observing System Experiment, Bull. Amer. Meteor. Soc., 77, 853-868. doi: 10.1175/1520-0477(1996)077<0853:CATERE>2.0.CO;2.
Loeb, N. G., W. Su, D.R. Doelling, T. Wong, P. Minnis, S. Thomas, W.F. Miller, 2016: Earth’s top-of-atmosphere radiation budget, ScienceDirect, Reference Module in Earth Systems and Environmental Sciences. Full PDF Version doi: 10.1016/B978-0-12-409548-9.10367-7 .
Loeb, N. G., D. R. Doelling, H. Wang, W. Su, C. Nguyen, J. G. Corbett, L. Liang, C. Mitrescu, F. G. Rose, and S. Kato, 2018: Clouds and the Earth’s Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) Top-of-Atmosphere (TOA) Edition-4.0 Data Product. J. Climate, 31, 895-918, doi: 10.1175/JCLI-D-17-0208.1.
Kato, S., F. G. Rose, D. A. Rutan, T. E. Thorsen, N. G. Loeb, D. R. Doelling, X. Huang, W. L. Smith, W. Su, and S.-H. Ham, 2018: Surface irradiances of Edition 4.0 Clouds and the Earth’s Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) data product, J. Climate, 31, 4501-4527, doi: 10.1175/JCLI-D-17-0523.1.
Doelling, D. R., N. G. Loeb, D. F. Keyes, M. L. Nordeen, D. Morstad, C. Nguyen, B. A. Wielicki, D. F. Young, M. Sun, 2013: Geostationary Enhanced Temporal Interpolation for CERES Flux Products, Journal of Atmospheric and Oceanic Technology, 30(6), 1072-1090. doi: 10.1175/JTECH-D-12-00136.1.
Doelling, D. R., M. Sun, L. T. Nguyen, M. L. Nordeen, C. O. Haney, D. F. Keyes, P. E. Mlynczak, 2016: Advances in Geostationary-Derived Longwave Fluxes for the CERES Synoptic (SYN1deg) Product, Journal of Atmospheric and Oceanic Technology, 33(3), 503-521. doi: 10.1175/JTECH-D-15-0147.1.
Su, W., T. P. Charlock, and F. G. Rose, 2005: Deriving surface ultraviolet radiation from CERES surface and atmospheric radiation budget: Methodology. J. Geophys. Res., 110(D14209), doi: 10.1029/2005JD005794.
Su, W., T. P. Charlock, F. G. Rose, and D. Rutan, 2007: Photosynthetically active radiation from clouds and the earth’s radiant energy system (CERES) products. J. Geophys. Res., 112(G02022), doi: 10.1029/2006JG000290.
Rutan, D. A., S. Kato, D. R. Doelling, F. G. Rose, L. T. Nguyen, T. E. Caldwell, and N. G. Loeb, 2015: CERES synoptic product: Methodology and validation of surface radiant flux. J. Atmos. Oceanic Technol., 32, 1121–1143, doi: 10.1175/JTECH-D-14-00165.1.
Loeb, N. G., N. Manalo-Smith, W. Su, M. Shankar, S. Thomas, 2016: CERES Top-of-Atmosphere Earth Radiation Budget Climate Data Record: Accounting for in-Orbit Changes in Instrument Calibration, Remote Sens., 8, 182, doi: 10.3390/rs8030182.
Trepte, Q. Z., P. Minnis, S. Sun-Mack, C. R. Yost, Y. Chen, Z. Jin, F.-L. Chang, W. L. Smith, Jr., K. M. Bedka, and T. L. Chee, 2019: Global cloud detection for CERES Edition 4 using Terra and Aqua MODIS data. IEEE Trans. Geosci. Remote Sens., 57, 9410-9449, doi: 10.1109/TGRS.2019.2926620.
Minnis, P., S. Sun-Mack, C. R. Yost, Y. Chen, W. L. Smith, Jr., F.-L. Chang, P. W. Heck, R. F. Arduini, Q. Z. Trepte, K. Ayers, K. Bedka, S. Bedka, R. R. Brown, E. Heckert, G. Hong, Z. Jin, R. Palikonda, R. Smith, B. Scarino, D. A. Spangenberg, P. Yang, Y. Xie, and Y. Yi, 2021: CERES MODIS cloud product retrievals for Edition 4, Part I: Algorithm changes. IEEE Trans. Geosci. Remote Sens., 59, 2744-2780, doi: 10.1109/TGRS.2020.3008866.
Yost, C., P. Minnis, S. Sun-Mack, Y. Chen, and W. L. Smith, Jr., 2021: CERES MODIS cloud product retrievals for Edition 4, Part II: Comparisons to CloudSat and CALIPSO. IEEE Trans. Geosci. Remote Sens., 59, 3695-3724, doi: 10.1109/TGRS.2020.3015155.
Minnis, P., S. Sun-Mack, W. L. Smith, Jr., Q. Z. Trepte, Y. Chen, C. R. Yost, G. Hong, F.-L. Chang, R. A. Smith, P. W. Heck, and P. Yang, 2023: VIIRS Edition 1 cloud properties for CERES, Part 1: Algorithm and results. Remote Sens., 15, 578. doi: 10.3390/rs15030578.
Yost, C. R., P. Minnis, S. Sun-Mack, W. L. Smith, Jr., Q. Z. Trepte, and Y. Chen, 2023: VIIRS Edition 1 cloud properties for CERES. Part 2: Evaluation with CALIPSO. Remote Sens., 15, 1349, doi: 10.3390/rs15051349.
Su, W., J. Corbett, Z. A. Eitzen, and L. Liang, 2015: Next-generation angular distribution models for top-of- atmosphere radiative flux calculation from the CERES instruments: Methodology. Atmos. Meas. Tech., 8:611–632, doi: 10.5194/amt-8-611-2015.
Su, W., J. Corbett, Z. A. Eitzen, and L. Liang, 2015: Next-generation angular distribution models for top-of- atmosphere radiative flux calculation from the CERES instruments: Validation. Atmos. Meas. Tech., 8:3297–3313, doi: 10.5194/amt-8-3297-2015.
Kratz, D. P., S. K. Gupta, A. C. Wilber, and V. E. Sothcott, 2020: Validation of the CERES Edition-4A Surface-Only Flux Algorithms, J. Appl. Meteor. Climatol., 59(2), 281-295, doi: 10.1175/JAMC-D-19-0068.1.
Scott, R. C., F. G. Rose, P. W. Stackhouse, N. G. Loeb, S. Kato, D. R. Doelling, D. A. Rutan, P. C. Taylor, W. L. Smith, 2022: Clouds and the Earth’s Radiant Energy System (CERES) Cloud Radiative Swath (CRS) Edition 4 Data Product. Journal of Atmospheric and Oceanic Technology, 39(11), 1781-1797. doi: 10.1175/JTECH-D-22-0021.1.
Sun, M., D. R. Doelling, N. G. Loeb, R. C. Scott, J. Wilkins, L. T. Nguyen, P. Mlynczak, 2022: Clouds and the Earth’s Radiant Energy System (CERES) FluxByCldTyp Edition 4 Data Product, Journal of Atmospheric and Oceanic Technology, 39(3), 303-318. doi: 10.1175/JTECH-D-21-0029.1.
Kratz, D. P., P. W. Stackhouse, Jr., S. K. Gupta, A. C. Wilber, P. Sawaengphokhai, and G. R. McGarragh, 2014: The Fast Longwave and Shortwave Flux (FLASHFlux) data product: Single Scanner Footprint Fluxes, J. Appl. Meteor. Climatol., 53, 1059-1079. doi: 10.1175/JAMC-D-13-061.1.
Stackhouse, P. W., D. P. Kratz, G. R. McGarragh, S. K. Gupta, and E. B. Geier, 2006: Fast Longwave and Shortwave Radiative Flux (FLASHFlux) Products From CERES and MODIS Measurements. 12th Conference on Atmospheric Radiation, American Meteorological Society, Madison, Wisconsin, 10-14 July 2006.
Kato, S., Rose, F. G., Sun‐Mack, S., Miller, W. F., Chen, Y., Rutan, D. A., et al. (2011). Improvements of top‐of‐atmosphere and surface irradiance computations with CALIPSO, CloudSat, and MODIS derived cloud and aerosol properties. Journal of Geophysical Research, 116, D19209. doi: 10.1029/2011JD16050.
Kato, S., Sun‐Mack, S., Miller, W. F., Rose, F. G., Chen, Y., Minnis, P., & Wielicki, B. A. (2010). Relationships among cloud occurrence frequency, overlap, and effective thickness derived from CALIPSO and CloudSat merged cloud vertical profiles. Journal of Geophysical Research, 115, D00H28. doi: 10.1029/2009JD012277.
This is a collection of all CERES Data Quality Summaries links/pages.
Spatially (regional, global, etc.) and temporally (daily, monthly, etc) averaged fluxes where the net flux has been energy balanced.
Spatially (regional, global, etc.) and temporally (daily, monthly, etc) averaged fluxes and clouds.
CERES instantaneous footprint level (20km nominal) fluxes and cloud properties.
Instantaneous footprint level (20km) CERES ephemeris and instrument level data.
This is a collection of the MOST RECENT Data Products Catalog (DPC) pages. Users who have ordered data should ALWAYS refer to the DPC pages that are provided with their data set. The DPC section for other specific data sets can be found on the CERES Data Products Catalog Page. Contact the CERES Documentation Team if older versions of DPC sections are needed.
CERES Data Flow Diagrams
HDF Primary (Archival) Products Available at LaRC
Primary output products which are permanently stored by the Atmopheric Science Data Center (ASDC), are formatted in HDF or HDF-EOS format, and are available for distribution to the scientific community
Internal Products
Output products which are stored by ASDC and are not available for distribution
External Ancillary Products
Input products which contain non-CERES data needed to interpret the CERES measurements and are not available for distribution
Edition3
Edition2
Edition1