Clouds and the Earth's Radiant Energy System (CERES)

Algorithm Theoretical Basis Document

Grid Top of Atmosphere and Surface Fluxes

(Subsystem 9.0)

G. Louis Smith¹ Takmeng Wong¹ Nichele McKoy² Kathryn A. Bush² Rajeeb Hazra³ Natividad Manalo-Smith⁴ David Rutan⁴ Maria V. Mitchum¹

¹Atmospheric Sciences Division, NASA Langley Research Center, Hampton, Virginia 23681-0001

²Science Applications International Corporation (SAIC), One Enterprise Parkway, Suite 300, Hampton, Virginia 23666 ³Oregon State University, Corvallis, Oregon

⁴Analytical Services & Materials, Inc., Hampton, Virginia 23666

CERES Top Level Data Flow Diagram

Abstract

Subsystem 9 provides the transformation from instrument-referenced data to spatially averaged data. The gridding and spatial averaging subsystems perform two major functions. The first is to assign CERES footprints to the proper gridded regions. This assignment is based on the colatitude and longitude of the CERES footprint field of view at the top of the atmosphere. The second major function is to perform spatial averaging of the various radiative fluxes and column-averaged cloud properties over each region. This subsystem uses the SSF archival product from Subsystem 4.0 for input. A CERES footprint is assigned to the appropriate region of a 1^o x 1^o equal-angle grid. Fluxes and column-averaged cloud properties are spatially averaged over each region on an hourly basis. Subsystem 9.0 outputs the SFC archival data product, which includes radiative fluxes at the top of the atmosphere and the surface, columnaveraged cloud properties, and angular model scene classes. After passing through this subsystem, the CERES data lose their traceability to specific CERES measurements.

9.0. Grid Top of Atmosphere and Surface Fluxes

9.1. Introduction

Gridding and averaging over regions for fluxes and other quantities is performed by Subsystems 6.0 and 9.0. Subsystem 9.0 (SFC) performs these functions for fluxes at the top-of-the-atmosphere and at the surface, and for column-averaged cloud properties. Input to the SFC subsystem is the SSF product (see Appendix A), and output is the SFC product (see Appendix B). Surface fluxes that are gridded and averaged in this subsystem have been calculated in Subsystem 4.0 from simple empirical algorithms, rather than from radiative transfer models, as is the case in Subsystem 6.0. The rationale and procedures for gridding and averaging are the same as for Subsystem 6.0, which grids and spatially averages the output of Subsystem 5.0, with the exception that the gridding is calculated on local time. Details of the averaging algorithms are presented in the ATBD for Subsystem 6.0.

Appendix A

Input Data Products

Grid TOA and Surface Fluxes (Subsystem 9.0)

This appendix describes the data products which are produced by the algorithms in this subsystem. Table A-1 below summarizes these products, listing the CERES and EOSDIS product codes or abbreviations, a short product name, the product type, the production frequency, and volume estimates for each individual product as well as a complete data month of production. The product types are defined as follows:

Archival products:	Assumed to be permanently stored by EOSDIS
Internal products:	Temporary storage by EOSDIS (days to years)
Ancillary products:	Non-CERES data needed to interpret measurements

The following pages describe each product. An introductory page provides an overall description of the product and specifies the temporal and spatial coverage. The table which follows the introductory page briefly describes every parameter which is contained in the product. Each product may be thought of as metadata followed by data records. The metadata (or header data) is not well-defined yet and is included mainly as a placeholder. The description of parameters which are present in each data record includes parameter number (a unique number for each distinct parameter), units, dynamic range, the number of elements per record, an estimate of the number of bits required to represent each parameter, and an element number (a unique number for each instance of every parameter). A summary at the bottom of each table shows the current estimated sizes for metadata, each data record, and the total data product. A more detailed description of each data product will be contained in a user's guide to be published before the first CERES launch.

Table A-1. Output Product Summary	

Product	Code	Name	Туре	Frequency	Size,	Monthly
CERES	EOSDIS	Name	Туре	Trequency	MB	Size, MB
SSF	CER11	Single Satellite TOA and Surface Fluxes, clouds	Archival	1/hour	237.6	176774.4

Single Satellite Footprint, TOA and Sfc Flux, Clouds (SSF)

EOSDIS Product Code: CER11

The Single Satellite CERES Footprint TOA and Surface Fluxes, Clouds (SSF) is produced from the cloud identification, convolution, inversion, and surface processing for CERES. Each SSF covers a single hour swath from a single CERES scanner (3 channels) mounted on one satellite. The product has a product header and multiple records of 113 parameters or 261 elements for each footprint.

The major categories of data output on the SSF are

CERES footprint geometry and CERES viewing angles CERES footprint radiance and flux (TOA and Surface) CERES footprint area statistics and imager viewing angles **CERES** footprint clear area statistics CERES footprint cloudy area statistics for two out of four cloud height categories Visible optical depth (mean and standard deviation) Logarithm of visible optical depth (mean and standard deviation) Infrared emissivity (mean and standard deviation) Liquid water path (mean and standard deviation) Ice water path (mean and standard deviation) Cloud top pressure (mean and standard deviation) Cloud effective pressure (mean and standard deviation) Cloud effective temperature (mean and standard deviation) Cloud effective height (mean and standard deviation) Cloud bottom pressure (mean and standard deviation) Water particle radius (mean and standard deviation) Ice particle effective diameter (mean and standard deviation) Particle phase (mean and standard deviation) Vertical aspect ratio (mean and standard deviation) Visible optical depth and IR emissivity (13 percentiles)

CERES footprint cloud overlap conditions (4 conditions)

The SSF is an archival product that will be run daily in validation mode starting with the TRMM launch until sufficient data have been collected and analyzed to produce a production quality set of CERES Angular Distribution Models (CADM). It is estimated that at TRMM launch plus 18 to 24 months, the SSF product will be produced on a routine basis and will be archived within EOSDIS for distribution to the science community.

Level: 2 **Type:** Archival Frequency: 1/Hour **Time Interval Covered** File: 1 Hour **Record:** 1/100 Second **Portion of Globe Covered** File: Satellite Footprints **Record:** One Footprint **Portion of Atmosphere Covered** File: Surface to TOA

Table A-2. Single Satelli	ite Footprii	nt (S	SF)				
Description	Parameter	Uni	its	Range	Elem	ents/	Bits/
·	Number				P,	acord	Flom
	Number				i te	coru	Liem
SSF_Header							
1 Day and Time at hour start			N/A	AS	CII string	1	216A
2 Character name of satellite			N/A	AS	CII string	1	64A
3 Character name of CERES instrument			N/A	AS	CII string	1	32A
4 Character name of high resolution imager instrument			N/A	AS	CII string	1	64A
5 Number of imager channels used			N/A	1.	20	1	16A
6 Central wavelengths of imager channels			um	0.4	15.0	20	324
7 Earth-Sun distance				0.4		1	324
2 Day and Time IES processed (SS1.0)				0.9	CIL otring	1	1501/
8 Day and Time IES processed (SS1.0)			N/A	AS	Sil string	1	1520
9 Day and Time Imager Cloud properties processed (SS4-1 - 4.3)			N/A	AS	Sil string	1	1520
10 Day and Time Convolution of imager with CERES processed (SS4.4))		N/A	AS	CII string	1	152V
11 Day and Time TOA and Surface Estimation processed (SS4.5 - 4.6)			N/A	AS	CII string	1	152A
12 Number of Footprints in SSF product			N/A	0	245475	1	32A
SSF_Record							
Footprint Geometry							
Time and Position							
1 Time of observation		1	dav	-0.0)11.01	1	64A
2 Radius of satellite from center of Earth at observation		2	km	600	0 8000	1	644
2 Colatitude of satellite at observation		2	dog	0.1	80	1	224
4 Lensitude of satellite at observation		4	deg	01	00	4	224
4 Longitude of satellite at observation		4	deg	03	00		3ZA
5 Colatitude of Sun at observation		5	deg	01	80	1	32A
6 Longitude of Sun at observation		6	deg	03	60	1	32A
7 Colatitude of CERES FOV at TOA		7	deg	01	80	1	32A
8 Longitude of CERES FOV at TOA		8	deg	03	60	1	32A
9 Colatitude of CERES FOV at surface		9	dea	01	80	1	32A
10 Longitude of CERES FOV at surface		10	dea	0.3	60	1	32A
11 Scan sample number		11	N/A	1 6	60 60	1	164
12 Docket number		10	N/A	0.3	00	1	164
		12	IN/A	03	2101	1	10A
13 Cone angle of CERES FOV at satellite		13	aeg	09	0	1	32A
14 Clock angle of CERES FOV at satellite wrt inertial velocity		14	deg	03	60	1	32A
15 Rate of change of cone angle		15	deg sec ⁻¹	-10	0 100	1	32A
16 Rate of change of clock angle		16	deg sec ⁻¹	-10	10	1	32A
17 Along-track angle of CERES FOV at TOA		17	deg	0	360	1	32A
18 Cross-track angle of CERES FOV at TOA		18	dea	-90	90	1	32A
19 X component of satellite inertial velocity		19	km sec ⁻¹	-10	10	1	644
20 X component of satellite inertial velocity		20	km soc ⁻¹	10	10	1	640
20 T component of satellite inertial velocity		20	km sec	-10	10	1	04A
		21	KIN Sec	-10	10	1	04A
CERES Viewing Angles							
22 CERES viewing zenith at TOA		22	deg	0	90	1	32A
23 CERES solar zenith at TOA		23	deg	0	180	1	32A
24 CERES relative azimuth at TOA		24	deg	03	60	1	32A
25 CERES viewing azimuth at TOA wrt North		25	deg	03	60	1	32V
Surface_Map Parameters							
26 Altitude of surface above sea level		26	m	-10	00 10000) 1	32A
27 Surface type index		27	N/A	1	20	8	16A
28 Surface type percent coverage		28	N/A	0	100	8	16A
Scene Type		20		•		Ũ	
20 CERES SW ADM type for inversion process		20	NI/A	0	200	1	164
		29	N/A	0	200	1	10A
30 CERES LW ADM type for Inversion process		30	IN/A	0	600	1	16A
31 CERES WN ADM type for inversion process		31	N/A	0	600	1	16A
Footprint Radiation							
CERES Filtered Radiances							
32 CERES TOT filtered radiance, upwards		32	W m ⁻² sr ⁻¹	07	'00	1	321
33 CERES SW filtered radiance unwards		33	W m ⁻² sr ⁻¹	-10	510	1	321
34 CERES WN filtered radiance, upwards		24	W m ⁻² cr ⁻¹	0.5	:0	1	221
34 CERES WIN Inteled radiance, upwards		25		0			221
35 IES quality hags		35	IN/A	see	Table TBL	רכ	32A
CERES Unfiltered Radiances							
36 CERES SW radiance, upwards		36	Wm ⁻² sr ⁻¹	-10	510	1	32A
37 CERES LW radiance, upwards		37	Wm ⁻² sr ⁻¹	0	200	1	32A
38 CERES WN radiance, upwards		38	Wm ⁻² sr ⁻¹	0	50	1	32A
TOA and Surface Flux							
39 CERES SW flux at TOA. upwards		39	Wm ⁻²	0	1400	1	32A
40 CERES LW flux at TOA upwards		40	Wm ⁻²	0	500	1	324
41 CERES WN flux at TOA upwards		<u>1</u>	Wm ⁻²	10	400	1	321
42 CEDES downword SM aurfage flow Medal A		10	W/m ⁻²	0	1400	4	2214
		42	VVIII	0	700	1	SZA
43 CERES downward Lvv sufface flux, Model A		43	vvm ^	0	700	1	32A
44 CERES downward WN surface flux, Model A		44	Wm ⁻	0	/00	1	32A
45 CERES downward nonWN surface flux, Model A		45	Wm⁻╯	0	700	1	32A

Table A-2. Single Satellite Footprint (SSF) Continued

Descrip	ption	Parameter	Uni	its Ra	inge E	lements/	Bits/	
		Number				Record	Elem	
46	CERES net SW surface flux, Model A		46	Wm ⁻²	01400	1	32	А
47	CERES net LW surface flux. Model A		47	Wm ⁻²	-25050	1	32	А
48	CERES downward SW surface flux. Model B (TBD)		48	Wm ⁻²	01400	1	32	A
49	CERES downward LW surface flux. Model B		49	Wm ⁻²	0700	1	32	А
50	CERES net SW surface flux. Model B (TBD)		50	Wm ⁻²	0 1400	1	32	Δ
51	CERES net I W surface flux, Model B		51	Wm ⁻²	-250 50	1	32	Δ
52	CERES spectral reflectivity		52	N/A	0 1	6	32	1
53	CERES broadband surface albedo		53	N/A	0.1	1	32	i
54	CERES I W surface emissivity		54	N/A	0.1	1	32	i
54	CERES W/N surface emissivity		55		01	1	22	
56	Imager-based surface skin temperature		56	K	175375	1	32	i
Full Footp	rint Area							
57	Number of imager pixels in CERES FOV		57	N/A	09000	1	16	A
58	Imager percent coverage		58	N/A	0100	1	16	A
59	Precipitable water		59	cm	0.001 10) 1	32	A
60	Shadowed pixels percent coverage (TBD)		60	N/A	0100	1	16	A
61	Notes on general procedure		61	N/A	TBD	1	16	A
62	Notes on Cloud Algorithms		62	N/A	TBD	1	16	A
63	Mean imager viewing zenith over CERES FOV		63	deg	090	1	32	A
64	Mean imager relative azimuth over CERES FOV		64	deg	0360	1	32	A
65	Imager channel identifier		65	N/A	120	5	16	A
66	5th percentile of imager radiances over CERES FOV		66	W m ⁻² sr ⁻¹ μm	⁻¹ TBD	5	32	V
67	Mean of imager radiances over CERES FOV		67	W m ⁻² sr ⁻¹ μm	⁻¹ TBD	5	32	A
68	95th percentile of imager radiances over CERES FOV		68	W m ⁻² sr ⁻¹ μm	⁻¹ TBD	5	32	V
Clear Foot	print Area							
69	Sundlint percent coverage		69	N/A	0 100	1	16	Δ
70	Snow/Ice percent coverage		70	N/A	0 100	. 1	16	A
71	Smoke percent coverage		71	N/A	0 100	. 1	16	Δ
72	Fire percent coverage		72	N/A	0 100	1	16	Δ
72	Mean of imager radiances over clear area		73	W m ⁻² sr ⁻¹ um	⁻¹ TBD	5	32	Δ
73	Stddov of imager radiances over clear area		74	$W m^{-2} cr^{-1} um$	-1 TBD	5	32	
74	Total across visible optical depth in clear area		74			1	32	1
75	Total aerosol offostivo radius in clear area		75	IN/A	02	1	32	A
70			70	μπ	020	1	32	A
Cloudy Fo	otprint Area							
Cloud Ca	itegory Arrays is Array[2] of:							
//	Cloud category area percent coverage			N/A	0100	2	16	A
78	Cloud category overcast percent coverage		78	N/A	0100	2	16	A
79	Cloud category broken percent coverage		79	N/A	0100	2	16	A
80	Mean of imager radiances for cloud category		80	W m ² sr ⁻¹ µm	TBD	2 x 5	32	A
81	Stddev of imager radiances for cloud category		81	W m ⁻ sr ⁻ ' μm	-' TBD	2 x 5	32	1
82	Mean cloud visible optical depth for cloud category		82	N/A	0400	2	32	A
83	Stddev of visible optical depth for cloud category		83	N/A	TBD	2	32	A
84	Mean logarithm of cloud visible optical depth for cloud catego	ory	84	N/A	06	2	32	A
85	Stddev of logarithm of visible optical depth for cloud category	y	85	N/A	TBD	2	32	A
86	Mean cloud infrared emissivity for cloud category		86	N/A	01	2	32	A
87	Stddev of cloud infrared emissivity for cloud category		87	N/A	TBD	2	32	A
88	Mean liquid water path for cloud category		88	g m ⁻²	TBD	2	32	A
89	Stddev of liquid water path for cloud category		89	g m ⁻²	TBD	2	32	V
90	Mean ice water path for cloud category		90	g m ⁻²	TBD	2	32	A
91	Stdev of ice water path for cloud category		91	g m ⁻²	TBD	2	32	V
92	Mean cloud top pressure for cloud category		92	ĥPa	01100	2	32	А
93	Stddev of cloud top pressure for cloud category		93	hPa	TBD	2	32	V
94	Mean cloud effective pressure for cloud category		94	hPa	01100	2	32	А
95	Stddev of cloud effective pressure for cloud category		95	hPa	TBD	2	32	A
96	Mean cloud effective temperature for cloud category		96	ĸ	100 350	2	32	Δ
97	Stddey of cloud effective temperature for cloud category		97	ĸ	TBD	2	32	Δ
00	Mean cloud effective height for cloud category		08	km	0 20	2	32	~ ~
30	Stddoy of cloud effective height for cloud category		00	km		2	22	
99	O Moon cloud bottom processor for cloud category		99 100	hDo		2	32	V A
10	Initian cloud boltom pressure for cloud category Stadou of cloud bottom processes for cloud category		100	nPa hDa	U 1100	2	32	A
10	Sudev of cloud bottom pressure for cloud category		101	пра	IBD	2	32	v
10	viean water particle radius for cloud category		102	μm	IRD	2	32	A
103	3 Stodev of water particle radius for cloud category		103	μm	IRD	2	32	A
10	4 Iviean ice particle effective diameter for cloud category		104	μm	IBD	2	32	A
10	5 Stddev of ice particle effective diameter for cloud category		105	μm	TBD	2	32	A

Table A-2. Single Satelli	te Footprint (SSF) Concl	uded			
Description	Parameter	Uni	its	Range	Elements/	Bits/	
	Number				Record	Elem	
106 Mean cloud particle phase for cloud category		106	N/A	01	2	32	Α
107 Stddev of cloud particle phase for cloud category		107	N/A	01	2	32	V
108 Mean vertical aspect ratio for cloud category (TBD)		108	N/A	01	2	32	Α
109 Stddev of vertical aspect ratio for cloud category (TBD)		109	N/A	TBD	2	32	V
110 Percentiles of visible optical depth for cloud category		110	N/A	TBD	2 x 13	32	1
111 Percentiles of IR emissivity for cloud category		111	N/A	TBD	2 x 13	32	I
Overlap Footprint Area							
112 Number of imager pixels for overlap condition		112	N/A	09000	4	16	Α
113 Overlap condition weighted area percentage		113	N/A	0100	4	16	A
Total Meta Bits/File:	1704						
Total Data Bits/Record:	7744						
Total Records/File:	245475						
Total Data Bits/File:	1900958400						
Total MegaBytes / Hour	237.6						
Total GigaBytes / Day	5.7						

Appendix B

Output Data Products

Grid TOA and Surface Fluxes (Subsystem 9.0)

This appendix describes the data products which are used by the algorithms in this subsystem. The table below summarizes these products, listing the CERES and EOSDIS product codes or abbreviations, a short product name, the product type, the production frequency, and volume estimates for each individual product as well as a complete data month of production. The product types are defined as follows:

Archival products: Assumed to be permanently stored by EOSDIS Internal products: Temporary storage by EOSDIS (days to years) The following pages describe each product. An introductory page provides an overall description of the product and specifies the temporal and spatial coverage. The table which follows the introductory page briefly describes every parameter which is contained in the product. Each product may be thought of as metadata followed by data records. The metadata (or header data) is not well-defined yet and is included mainly as a placeholder. The description of parameters which are present in each data record includes parameter number (a unique number for each distinct parameter), units, dynamic range, the number of elements per record, an estimate of the number of bits required to represent each parameter, and an element number (a unique number for each instance of every parameter). A summary at the bottom of each table shows the current estimated sizes of metadata, each data record, and the total data product. A more detailed description of each data product will be contained in a User's Guide to be published before the first CERES launch.

Product	t Code	Name	Type	Type	Frequency	Size,	Monthly
CERES	EOSDIS	Name	Туре	Trequency	MB	Size, MB	
SFC	CER12	Gridded Single Satellite TOA and Surface Fluxes	Archival	1/Month	38.0	6847.2	

Table B-1. Output Product Summary

Grid TOA and Surface Fluxes (Subsystem 9.0)

EOSDIS Product Code: CER12

The Monthly Gridded Single Satellite Fluxes and Clouds (SFC) archival data product contains hourly single satellite flux and cloud parameters averaged over 1.0 degree regions. Input to the SFC Subsystem is the Single Satellite CERES Footprint TOA and Surface Fluxes, Clouds (SSF) archival data product. Each SFC covers a single month swath from a single CERES instrument mounted on one satellite. The product has a product header and multiple records; each record contains spatially averaged data for an individual region.

The major categories of data output on the SFC are as follows:

- Region data
- Total-sky radiative fluxes at TOA and surface
- Clear-sky radiative fluxes at TOA and surface
- Column-averaged cloud properties
- Angular model scene classes
- Surface-only data

A complete listing of parameters for this data product can be found in Table .

Level: 3	Portion of Globe Covered
Type: Archival	File: Gridded satellite swath
Frequency: 1/Month	Record: 1.0-degree equal-angle region

Time Interval Covered File: Month Record: Hour Portion of Atmosphere Covered File: TOA and surface Table B-2. Gridded Single Satellite TOA and Surface Fluxes and Clouds (SFC)

Description	Parameter	Unit	Range	Elements/	Bits/	Elem
	Num			Record	Elem	Num
SFC Header						
CERES Data Product Code		N/A	N/A	1	32	
CERES Spacecraft Identification Code		N/A	N/A	1	32	
CERES Instrument Identification code		N/A	N/A	1	32	
Zone Number		N/A	1 180	1	32	
Data Year		N/A	1996 2099	1	32	
Data Month		N/A	1 12	1	32	
Number of hours per region		N/A	0744	360	32	
Data Process Date		N/A	N/A	1	136	
Description	Deremeter	Linit	Danga	Flomente/	Dite/	Flow
Description	Parameter	Unit	Range	Elements/	DILS/	Elem
OFO Desert	Num			Record	Elem	Num
SFC Record						
Spatially Averaged Region Parameters						
Time and Position Data						
Key Footprint Parameters						
Julian Time	1	Day	0.0 1.0	1	32	1
Sun colatitude	2	Degrees	0.0 180.0	1	32	2
Sun longitude	3	Degrees	0.0360.0	1	32	3
Relative azimuth angle at TOA	4	Degrees	0.0360.0	1	32	4
Cosine of solar zenith angle at TOA	5	N/A	0.0 1.0	1	32	5
Spacecraft zenith angle	6	Degrees	0.090.0	1	32	6
Region ID		Ū				
Region number	7	Dimensionless	1 64800	1	32	7
Hour box number	8	Dimensionless	1 744	1	32	8
Number of Footprints in region	9	N/A	1 40	1	32	9
Number of imager pixels in CERES fov in the region	10	N/A	1 360000	1	32	10
Other Regional Parameters						
Altitude of surface above sea level	11	m	-1000 10000) 1	32	11
Surface type percentage	12	Percent	0.0 100.0	20	32	12
Snow/Ice percent coverage	13	Percent	0.0 100.0	1	32	32
Precipitable Water	14	cm	0.0001 10.0	1	32	33
Crestially Assessed Dedictive Flux Deservations						
Spatially Averaged Radiative Flux Parameters						
I DA Ciedi-Sky Fluxes is Allay[5] OI.	15	$M m^{-2}$	0.0 1400.0	2	22	24
Upward LW flux at TOA: mean, std, num obs	10	$W m^{-2}$	100.0 500.0	3	32	34
Upward LW window flux at TOA: mean, std, num obs	10	W m ⁻²	0.0 800.0	3	32	40
Albedo: mean std num obs	18	Dimensionless	0.0 000.0	3	32	40
TOA Total-Sky Fluxes is Array[3] of:	10	Dimensioniess	0.0 1.0	5	52	40
Inward SW flux at TOA: mean std num obs	19	W/ m ⁻²	0.0 1400.0	3	32	46
Upward I W flux at TOA: mean, std, num obs	20	W m ⁻²	100.0 500.0	3	32	40
Upward LW window flux at TOA: mean, std, num obs	20	W m ⁻²	0.0 800.0	3	32	52
Albedo: mean std num obs	21	Dimensionless	0.0 1.0	3	32	55
Surface Clear-Sky Flux is Array[3] of	22	Dimensioniess	0.0 1.0	0	02	00
Downward SW flux Model A: mean std num obs	23	W m ⁻²	0.0 1400.0	3	32	58
Downward I W flux Model A: mean std num obs	20	W m ⁻²	0.0 700.0	3	32	61
SW net flux Model A: mean std num obs	25	W m ⁻²	0.0 1400.0	3	32	64
I W net flux, Model A: mean, std, num obs	26	W m ⁻²	-250.0 50.0	3	32	67
Downward WN flux, Model A: mean, std, num obs	20	W m ⁻²	0.0 700.0	3	32	70
Downward nonWN flux, Model A: mean, std, num obs	28	W m ⁻²	0.0 700.0	3	32	70
Downward SW flux Model B: mean std num obs	20	W/m ⁻²	0.0 1400.0	3	32	76
Downward I W flux, Model B: mean, std, num obs	30	W/m ⁻²		3	32	70
SW net flux, Model B: mean, std, num obs	31	W/m ⁻²	0.0 1400.0	3	32	82
LW net flux, Model B: mean, std. num obs	32	W m ⁻²	-250.0 50.0	3	32	85
,,						
Surface Total-Sky Flux is Array[3] of:						
Downward SW flux, Model A: mean, std, num obs	33	W m ⁻²	0.0 1400.0	3	32	88
Downward LW flux, Model A: mean, std, num obs	34	W m⁻²	0.0 700.0	3	32	91
SW net flux, Model A: mean, std, num obs	35	W m ⁻²	0.0 1400.0	3	32	94
LW net flux, Model A: mean, std, num obs	36	W m ⁻²	-250.0 50.0	3	32	97
Downward WN flux, Model A: mean, std, num obs	37	W m ⁻²	0.0 700.0	3	32	100
Downward nonWN flux, Model A: mean, std, num obs	38	W m ⁻²	0.0 700.0	3	32	103
Downward SW flux, Model B: mean, std, num obs	39	W m ⁻²	0.0 1400.0	3	32	106

Table B-2. Gridded Single Satellite TOA and Surface Fluxes and Clouds (SFC) Concluded

Description	Parameter	Unit	Range	Elements/	Bits/	Elem
	Num			Record	Elem	Num
Downward I W flux, Model B: mean, std, num obs	40	W/m ⁻²	0 0 700 0	3	32	109
SW net flux Model B: mean std num obs	40	W m ⁻²	0.0 1400.0	3	32	112
I W net flux, Model B: mean, std, num obs	42	W m ⁻²	-250.0 50.0	3	32	115
Emissivity			20010 11 0010	0	02	
LW surface emissivity	43	N/A	01	1	32	118
WN surface emissivity	44	N/A	01	1	32	119
Spatially Averaged Cloud Parameters						
Spatially Averaged Weighted Column						
Averaged Cloud Properties for 5 Weightings						
(Five Weightings: SW, LW TOA, SFC LW, LWP, IWP)						
Spatially Averaged Cloud Area Fractions						
Overcast percent coverage	45	Percent	0.0 100.0	5	32	120
Total percent coverage	46	Percent	0.0 100.0	5	32	125
Spatially Averaged Cloud Properties is Array[3] of:						
Cloud effective pressure: mean, std, num obs	47	hPa	0.0 1100.0	15	32	130
Cloud effective temperature: mean, std, num obs	48	к	100.0 350.0	15	32	145
Cloud effective altitude: mean, std, num obs	49	km	0.0 20.0	15	32	160
Cloud top pressure: mean, std, num obs	50	hPa	0.0 1100.0	15	32	175
Cloud bottom pressure: mean, std, num obs	51	hPa	0.0 1100.0	15	32	190
Cloud particle phase: mean, std, num obs	52	Fraction	0.0 1.0	15	32	205
Liquid water path: mean, std, num obs	53	kg m ⁻²	0.01 1000.0	15	32	220
Ice water path: mean, std, num obs	54	kg m ⁻²	0.01 1000.0	15	32	235
Liquid particle radius: mean, std, num obs	55	micron	0.0 1000.0	15	32	250
Ice particle effective diameter: mean, std, num obs	56	micron	0.0 100.0	15	32	265
Visible optical depth (linear): mean, std, num obs	57	Dimensionless	0.0 50.0	15	32	280
Visible optical depth (logarithmic): mean, std, num obs	58	Dimensionless	0.0 50.0	15	32	295
Infrared emissivity: mean, std, num obs	59	Dimensionless	0.0 2.0	15	32	310
Cloud vertical aspect ratio: mean, std, num obs	60	Dimensionless	TBD	15	32	325
Spatially Averaged Angular Model Scene Type Parameters						
Angular Model Scene Type Parameters for 12 Scene Types						
Fractional area coverage	61	Percent	0.0 100.0	12	32	340
Angular Model Scene Type Statistical Data is Array[2] of:						
Incident Solar Flux: mean, std	62	Dimensionless	0.0 1400.0	24	32	352
Albedo: mean, std	63	Dimensionless	0.0 1.0	24	32	376
LW flux: mean, std	64	W m ⁻²	0.0 400.0	24	32	400
Total Meta Bits/File:	11848					
Total Data Bits/Record:	13536					
Total Records/File:	23572					
Total Data Bits/File:	319070592					
Total Bits/File:	319082440					
Total Files/Product:	180					
Total Meta Bits/Product:	2132640					
Total Data Bits/Product:	57432706560					
Total Bits/Product:	57434839200					
Total MegaBytes/File:	38.04					
Total GigaBytes/Product:	6.69					

Appendix C

Nomenclature

Acronyms

ADEOS	Advanced Earth Observing System
ADM	Angular Distribution Model
AIRS	Atmospheric Infrared Sounder (EOS-AM)
AMSU	Advanced Microwave Sounding Unit (EOS-PM)
APD	Aerosol Profile Data
APID	Application Identifier
ARESE	ARM Enhanced Shortwave Experiment
ARM	Atmospheric Radiation Measurement
ASOS	Automated Surface Observing Sites
ASTER	Advanced Spaceborne Thermal Emission and Reflection Radiometer
ASTEX	Atlantic Stratocumulus Transition Experiment
ASTR	Atmospheric Structures
ATBD	Algorithm Theoretical Basis Document
AVG	Monthly Regional, Average Radiative Fluxes and Clouds (CERES Archival Data Product)
AVHRR	Advanced Very High Resolution Radiometer
BDS	Bidirectional Scan (CERES Archival Data Product)
BRIE	Best Regional Integral Estimate
BSRN	Baseline Surface Radiation Network
BTD	Brightness Temperature Difference(s)
CCD	Charge Coupled Device
CCSDS	Consultative Committee for Space Data Systems
CEPEX	Central Equatorial Pacific Experiment
CERES	Clouds and the Earth's Radiant Energy System
CID	Cloud Imager Data
CLAVR	Clouds from AVHRR
CLS	Constrained Least Squares
COPRS	Cloud Optical Property Retrieval System
CPR	Cloud Profiling Radar
CRH	Clear Reflectance, Temperature History (CERES Archival Data Product)
CRS	Single Satellite CERES Footprint, Radiative Fluxes and Clouds (CERES Archival Data Product)
DAAC	Distributed Active Archive Center
DAC	Digital-Analog Converter

DAO	Data Assimilation Office
DB	Database
DFD	Data Flow Diagram
DLF	Downward Longwave Flux
DMSP	Defense Meteorological Satellite Program
EADM	ERBE-Like Albedo Directional Model (CERES Input Data Product)
ECA	Earth Central Angle
ECLIPS	Experimental Cloud Lidar Pilot Study
ECMWF	European Centre for Medium-Range Weather Forecasts
EDDB	ERBE-Like Daily Data Base (CERES Archival Data Product)
EID9	ERBE-Like Internal Data Product 9 (CERES Internal Data Product)
EOS	Earth Observing System
EOSDIS	Earth Observing System Data Information System
EOS-AM	EOS Morning Crossing Mission
EOS-PM	EOS Afternoon Crossing Mission
ENSO	El Niño/Southern Oscillation
ENVISAT	Environmental Satellite
EPHANC	Ephemeris and Ancillary (CERES Input Data Product)
ERB	Earth Radiation Budget
ERBE	Earth Radiation Budget Experiment
ERBS	Earth Radiation Budget Satellite
ESA	European Space Agency
ES4	ERBE-Like S4 Data Product (CERES Archival Data Product)
ES4G	ERBE-Like S4G Data Product (CERES Archival Data Product)
ES8	ERBE-Like S8 Data Product (CERES Archival Data Product)
ES9	ERBE-Like S9 Data Product (CERES Archival Data Product)
FLOP	Floating Point Operation
FIRE	First ISCCP Regional Experiment
FIRE II IFO	First ISCCP Regional Experiment II Intensive Field Observations
FOV	Field of View
FSW	Hourly Gridded Single Satellite Fluxes and Clouds (CERES Archival Data Product)
FTM	Functional Test Model
GAC	Global Area Coverage (AVHRR data mode)
GAP	Gridded Atmospheric Product (CERES Input Data Product)
GCIP	GEWEX Continental-Phase International Project
GCM	General Circulation Model
GEBA	Global Energy Balance Archive
GEO	ISSCP Radiances (CERES Input Data Product)

GEWEX	Global Energy and Water Cycle Experiment
GLAS	Geoscience Laser Altimetry System
GMS	Geostationary Meteorological Satellite
GOES	Geostationary Operational Environmental Satellite
HBTM	Hybrid Bispectral Threshold Method
HIRS	High-Resolution Infrared Radiation Sounder
HIS	High-Resolution Interferometer Sounder
ICM	Internal Calibration Module
ICRCCM	Intercomparison of Radiation Codes in Climate Models
ID	Identification
IEEE	Institute of Electrical and Electronics Engineers
IES	Instrument Earth Scans (CERES Internal Data Product)
IFO	Intensive Field Observation
INSAT	Indian Satellite
IOP	Intensive Observing Period
IR	Infrared
IRIS	Infrared Interferometer Spectrometer
ISCCP	International Satellite Cloud Climatology Project
ISS	Integrated Sounding System
IWP	Ice Water Path
LAC	Local Area Coverage (AVHRR data mode)
LaRC	Langley Research Center
LBC	Laser Beam Ceilometer
LBTM	Layer Bispectral Threshold Method
Lidar	Light Detection and Ranging
LITE	Lidar In-Space Technology Experiment
Lowtran 7	Low-Resolution Transmittance (Radiative Transfer Code)
LW	Longwave
LWP	Liquid Water Path
MAM	Mirror Attenuator Mosaic
MC	Mostly Cloudy
MCR	Microwave Cloud Radiometer
METEOSAT	Meteorological Operational Satellite (European)
METSAT	Meteorological Satellite
MFLOP	Million FLOP
MIMR	Multifrequency Imaging Microwave Radiometer
MISR	Multiangle Imaging Spectroradiometer
MLE	Maximum Likelihood Estimate

MOA	Meteorology Ozone and Aerosol
MODIS	Moderate-Resolution Imaging Spectroradiometer
MSMR	Multispectral, multiresolution
MTSA	Monthly Time and Space Averaging
MWH	Microwave Humidity
MWP	Microwave Water Path
NASA	National Aeronautics and Space Administration
NCAR	National Center for Atmospheric Research
NCEP	National Centers for Environmental Prediction
NESDIS	National Environmental Satellite, Data, and Information Service
NIR	Near Infrared
NMC	National Meteorological Center
NOAA	National Oceanic and Atmospheric Administration
NWP	Numerical Weather Prediction
OLR	Outgoing Longwave Radiation
OPD	Ozone Profile Data (CERES Input Data Product)
OV	Overcast
PC	Partly Cloudy
POLDER	Polarization of Directionality of Earth's Reflectances
PRT	Platinum Resistance Thermometer
PSF	Point Spread Function
PW	Precipitable Water
RAPS	Rotating Azimuth Plane Scan
RPM	Radiance Pairs Method
RTM	Radiometer Test Model
SAB	Sorting by Angular Bins
SAGE	Stratospheric Aerosol and Gas Experiment
SARB	Surface and Atmospheric Radiation Budget Working Group
SDCD	Solar Distance Correction and Declination
SFC	Hourly Gridded Single Satellite TOA and Surface Fluxes (CERES Archival Data Product)
SHEBA	Surface Heat Budget in the Arctic
SPECTRE	Spectral Radiance Experiment
SRB	Surface Radiation Budget
SRBAVG	Surface Radiation Budget Average (CERES Archival Data Product)
SSF	Single Satellite CERES Footprint TOA and Surface Fluxes, Clouds
SSMI	Special Sensor Microwave Imager
SST	Sea Surface Temperature

SURFMAP	Surface Properties and Maps (CERES Input Product)
SW	Shortwave
SWICS	Shortwave Internal Calibration Source
SYN	Synoptic Radiative Fluxes and Clouds (CERES Archival Data Product)
SZA	Solar Zenith Angle
THIR	Temperature/Humidity Infrared Radiometer (Nimbus)
TIROS	Television Infrared Observation Satellite
TISA	Time Interpolation and Spatial Averaging Working Group
TMI	TRMM Microwave Imager
TOA	Top of the Atmosphere
TOGA	Tropical Ocean Global Atmosphere
TOMS	Total Ozone Mapping Spectrometer
TOVS	TIROS Operational Vertical Sounder
TRMM	Tropical Rainfall Measuring Mission
TSA	Time-Space Averaging
UAV	Unmanned Aerospace Vehicle
UT	Universal Time
UTC	Universal Time Code
VAS	VISSR Atmospheric Sounder (GOES)
VIRS	Visible Infrared Scanner
VISSR	Visible and Infrared Spin Scan Radiometer
WCRP	World Climate Research Program
WG	Working Group
Win	Window
WN	Window
WMO	World Meteorological Organization
ZAVG	Monthly Zonal and Global Average Radiative Fluxes and Clouds (CERES Archival Data Product)
Symbols	
Α	atmospheric absorptance
$B_{\lambda}(T)$	Planck function
С	cloud fractional area coverage
CF_2Cl_2	dichlorofluorocarbon
CFCl ₃	trichlorofluorocarbon
CH ₄	methane
CO ₂	carbon dioxide
D	total number of days in the month

cloud particle equivalent diameter (for ice clouds)

 D_e

E_o	solar constant or solar irradiance
F	flux
f	fraction
G_a	atmospheric greenhouse effect
g	cloud asymmetry parameter
H ₂ O	water vapor
Ι	radiance
i	scene type
m_i	imaginary refractive index
\hat{N}	angular momentum vector
N ₂ O	nitrous oxide
O ₃	ozone
Р	point spread function
р	pressure
Q_a	absorption efficiency
Q_e	extinction efficiency
Q_s	scattering efficiency
R	anisotropic reflectance factor
r _E	radius of the Earth
r _e	effective cloud droplet radius (for water clouds)
r _h	column-averaged relative humidity
S_o	summed solar incident SW flux
S_o'	integrated solar incident SW flux
Т	temperature
T_B	blackbody temperature
t	time or transmittance
W_{liq}	liquid water path
w	precipitable water
\hat{x}_o	satellite position at t_o
<i>x</i> , <i>y</i> , <i>z</i>	satellite position vector components
<i>x</i> , <i>y</i> , <i>z</i>	satellite velocity vector components
Z.	altitude
<i>z_{top}</i>	altitude at top of atmosphere
α	albedo or cone angle
β	cross-scan angle
γ	Earth central angle
γ_{at}	along-track angle
γ_{ct}	cross-track angle

δ	along-scan angle
ε	emittance
Θ	colatitude of satellite
θ	viewing zenith angle
θ_o	solar zenith angle
λ	wavelength
μ	viewing zenith angle cosine
μ_o	solar zenith angle cosine
ν	wave number
ρ	bidirectional reflectance
τ	optical depth
$\tau_{aer}(p)$	spectral optical depth profiles of aerosols
$\tau_{H_2O\lambda}(p)$	spectral optical depth profiles of water vapor
$\tau_{O_3}(p)$	spectral optical depth profiles of ozone
Φ	longitude of satellite
φ	azimuth angle
ω _o	single-scattering albedo
Subscripts:	
с	cloud
cb	cloud base
се	cloud effective
cld	cloud
CS	clear sky
ct	cloud top
ice	ice water
lc	lower cloud
liq	liquid water
S	surface
ис	upper cloud
λ	spectral wavelength
Units	
AU	astronomical unit
cm	centimeter
cm-sec ⁻¹	centimeter per second
count	count
day	day, Julian date
deg	degree

deg-sec ⁻¹	degree per second
DU	Dobson unit
erg-sec ⁻¹	erg per second
fraction	fraction (range of 0–1)
g	gram
g-cm ⁻²	gram per square centimeter
$g-g^{-1}$	gram per gram
g-m ⁻²	gram per square meter
h	hour
hPa	hectopascal
Κ	Kelvin
kg	kilogram
kg-m ⁻²	kilogram per square meter
km	kilometer
km-sec ⁻¹	kilometer per second
m	meter
mm	millimeter
μm	micrometer, micron
N/A	not applicable, none, unitless, dimensionless
ohm-cm ⁻¹	ohm per centimeter
percent	percent (range of 0-100)
rad	radian
rad-sec ⁻¹	radian per second
sec	second
sr ⁻¹	per steradian
W	watt
$W-m^{-2}$	watt per square meter
$W-m^{-2}sr^{-1}$	watt per square meter per steradian
$W-m^{-2}sr^{-1}\mu m^{-1}$	watt per square meter per steradian per micrometer