EBAF Net Balance
- CERES product TOA fluxes have a positive net imbalance, due mainly to the CERES instrument absolute calibration
- The CERES EBAF-TOA
product was designed for climate modelers that need a net imbalance constrained to the ocean heat storage term
(Hansen et al. 2005)
- CERES also uses the observed SORCE incoming solar fluxes
(Kopp et al. 2005),
which has solar constant of 1361.0
- CERES performed a flux uncertainty analysis and determined that the CERES instrument calibration
was the largest uncertainty at 2% for the SW and 1% for LW.
- More information can be found in the
EBAF Data Quality Summary (DQS)
Comparison of ERBElike, SSF1deg, SYN1deg, and EBAF fluxes
TOA fluxes (W/m2) Mar00-Feb04 |
ERBElike Edition2 |
SSF1deg Edition2 |
SYN1deg Edition2 |
EBAF Edition2 |
Incoming Solar | 341.3 | 341.3 | 341.3 | 340.0 |
OLR | 239.0 | 237.7 | 237.2 | 239.7 |
SW | 98.3 | 96.6 | 97.7 | 99.5 |
Net | 4.0 | 7.0 | 6.0 | 0.85 |
CERES Net flux uncertainty analysis
Net flux sensitivity (
αi), standard deviation of error (
σi),
maximum likelihood error (
xi), and error effect on net TOA flux.
Parameter |
Net TOA Flux sensitivity, αi (W/m2/%) |
2σ uncertainty, δi (%) |
Maximum Likelihood solution, xi (%) |
TOA Flux adjustment (W/m2) |
SW gain | -0.977 | 2.0 | 1.6 | 1.57 |
LW gain | -2.37 | 1.0 | 0.972 | 2.3 |
Unfiltered SW | -0.977 | 0.5 | 0.105 | 0.1 |
Unfiltered LW(N) | -1.19 | 0.2 | 0.022 | 0.03 |
Unfiltered LW(D) | -1.19 | 0.38 | 0.07 | 0.08 |
SW radiance to flux | -0.977 | 0.20 | 0.017 | 0.02 |
LW radiance to flux | -2.37 | 0.13 | 0.016 | 0.04 |
Time-averaging SW | -0.977 | 0.30 | 0.038 | 0.04 |
Time-averaging LW | -2.37 | 0.13 | 0.016 | 0.04 |
Reference Level, SW | -0.977 | 0.10 | 0.004 | 0.00 |
Reference Level, LW | -2.37 | 0.08 | 0.007 | 0.02 |
Incoming Solar | 3.40 | 0.06 | -0.005 | -0.02 |
Total SW | | | | 1.7 |
Total LW | | | | 2.5 |
Total Net | | | | -4.2 |
- Note the SW and LW gains or instrument absolute calibration have
the highest uncertainty and largest corresponding TOA flux adjustment
CERES Earth's Radiation Budget
- For the Earth to remain in balance the energy coming into and leaving the Earth must equal.
- The CERES absolute instrument calibration currently does not have zero net balance and must be
adjusted to balance the Earth's energy budget.
- After the EBAF adjustment the CERES fluxes may be used in climate models for climate model evaluation,
estimating the Earth's global mean energy budget and to infer meridional heat transport.
CERES Data Product Information
Reference
-
Loeb, Norman G.; Priestley, Kory J.; Kratz, David P.; Geier, Erika B.; Green, Richard N.; Wielicki, Bruce A.;
Hinton, Patricia O’Rawe; Nolan, Sandra K.
(2001)
Determination of Unfiltered Radiances from the Clouds and the Earth’s Radiant Energy System Instrument
Journal of Applied Meteorology, 40(4), 822-835.
https://doi.org/10.1175/1520-0450(2001)040<0822:DOURFT>2.0.CO;2
Reference
-
Loeb, Norman G.; Kato, Seiji; Loukachine, Konstantin; Manalo-Smith, Natividad
(2005)
Angular Distribution Models for Top-of-Atmosphere Radiative Flux Estimation from the Clouds and the
Earth’s Radiant Energy System Instrument on the Terra Satellite. Part I: Methodology
Journal of Atmospheric and Oceanic Technology, 22(4), 338-351.
https://doi.org/10.1175/JTECH1712.1
Reference
-
Loeb, N. G.; Kato, S.; Loukachine, K.; Manalo-Smith, N.; Doelling, D. R.
(2007)
Angular distribution models for top-of-atmosphere radiative flux estimation from the Clouds and the
Earth's Radiant Energy System instrument on the Terra satellite. Part II: Validation
Journal of Atmospheric and Oceanic Technology, 24(4), 564-584.
https://doi.org/10.1175/jtech1983.1
Reference
-
Minnis, P.; Sun-Mack, Szedung; Young, D.F.; Heck, P.W.; Garber, D.P.; Chen, Yan; Spangenberg, D.A.; Arduini, R.F.;
Trepte, Q.Z.; Smith, W.L.; Ayers, J.K.; Gibson, S.C.; Miller, W.F.; Hong, G.; Chakrapani, V.; Takano, Y.; Liou, Kuo-Nan; Xie, Yu; Yang, Ping
(2011)
CERES Edition-2 Cloud Property Retrievals Using TRMM VIRS and Terra and Aqua MODIS Data #x2014;Part I: Algorithms
IEEE Transactions on Geoscience and Remote Sensing, 49(11), 4374-4400.
https://doi.org/10.1109/TGRS.2011.2144601