Skip to main content

Dr. William Smith

Dr. William SmithBill Smith leads the CERES Cloud working group and is responsible for producing, evaluating and distributing global cloud property datasets derived from satellite imagers.

The CERES Cloud WG aims to derive spatially and temporally consistent pixel-level cloud properties from the MODIS and VIIRS imagers flown with CERES instruments in low-earth orbits and from imagers on the global constellation of geostationary satellites flown during the CERES record. Understanding clouds, their geographic distribution, composition, altitudes, and radiative properties (i.e., how they reflect, absorb, and emit energy), is key to understanding Earth’s energy budget and climate. Satellite imager spectral radiances are analyzed to distinguish clouds from cloud free areas, and further interpreted with a combination of theoretical and empirical methods to derive their physical characteristics. The cloud properties are critical for applications in CERES data processing sub-systems including those responsible for (1) the inversion of the CERES instrument radiances to energy fluxes, (2) the computation of surface fluxes and atmospheric heating rates, and (3) for time interpolating the twice daily CERES observations to properly account for diurnal changes.

Contact Information

NASA Langley Research Center
Mail Stop 420, Hampton, VA 23681-2199

Phone: 757-864-8577

Fax: 757-864-7996

Email: william.l.smith@nasa.gov

Education

Publications

2024

Sorenson, Blake T.; Reid, Jeffrey S.; Zhang, Jianglong; Holz, Robert E.; Smith Sr., William L.; Gumber, AmandaSorenson, B. T., J. S. Reid, J. Zhang, R. E. Holz, W. L. Smith Sr., A. Gumber, 2024: Thermal infrared observations of a western United States biomass burning aerosol plume. Atmospheric Chemistry and Physics, 24(2), 1231-1248. doi: 10.5194/acp-24-1231-2024. Biomass burning smoke particles, due to their submicron particle size in relation to the average thermal infrared (TIR) wavelength, theoretically have negligible signals at the TIR channels. However, nearly instantaneous longwave (LW) signatures of thick smoke plumes can be frequently observed at the TIR channels from remotely sensed data, including at 10.6 µm (IR window), as well as in water-vapor-sensitive wavelengths at 7.3, 6.8, and 6.3 µm (e.g., lower, middle, and upper troposphere). We systematically evaluated multiple hypotheses as to causal factors of these IR signatures of biomass burning smoke using a combination of data from the Aqua MODerate resolution Imaging Spectroradiometer (MODIS), Aqua Cloud and the Earth Radiant Energy System (CERES), Geostationary Operational Environmental Satellite 16/17 (GOES-16/17) Advanced Baseline Imager, and Suomi-NPP Visible Infrared Imaging Radiometer Suite (VIIRS) and Cross-track Infrared Sounder (CrIS). The largely clear transmission of light through wildfire smoke in the near infrared indicates that coarse or giant ash particles are unlikely to be the dominant cause. Rather, clear signals in water vapor and TIR channels suggest that both co-transported water vapor injected to the middle to upper troposphere and surface cooling by the reduction of surface radiation by the plume are more significant, with the surface cooling effect of smoke aloft being the most dominant. Giving consideration of the smoke impacts on TIR and longwave, CERES indicates that large wildfire aerosol plumes are more radiatively neutral. Further, this smoke-induced TIR signal may be used to map very optically thick smoke plumes, where traditional aerosol retrieval methods have difficulties.

2023

Ding, Jiachen; Yang, Ping; Wang, Lifan; Oran, Elaine; Loeb, Norman G.; Smith Jr., William L.; Minnis, PatrickDing, J., P. Yang, L. Wang, E. Oran, N. G. Loeb, W. L. Smith Jr., P. Minnis, 2023: Quantification of Global Cloud Properties With Use of Spherical Harmonic Functions. Earth and Space Science, 10(3), e2022EA002718. doi: 10.1029/2022EA002718. Spherical harmonic (SH) expansion is a useful tool to study any variable that has valid values at all latitudes and longitudes. The variable can be quantified as a sum of different spherical harmonic components, which are the spherical harmonic functions multiplied by their expansion coefficients. We find that the SH components of cloud radiative effect (CRE) have correlations with El Niño-Southern Oscillation (ENSO) and the Hadley Circulation (HC). In particular, the expansion degree 2 () SH power spectrum component anomaly of CRE is strongly correlated with ENSO. The two dipole patterns appearing in the SH component anomaly map can be reasonably explained by a known mechanism of ENSO's impact on cloud properties. The and SH power spectrum components are correlated with HC intensity, whereas the and components are correlated with HC latitudinal widths. In ENSO warm and cold phases, the HC-correlated SH components have opposite anomalies, which suggests the impact of ENSO on HC. This study illustrates that the SH expansion technique provides a different perspective to study the impacts of large-scale atmospheric circulation on global cloud properties and radiative effects. cloud; cloud radiative effect; radiative transfer; spherical harmonic functions
Duda, David P.; Smith Jr., William L.; Bedka, Sarah; Spangenberg, Douglas; Chee, Thad; Minnis, PatrickDuda, D. P., W. L. Smith Jr., S. Bedka, D. Spangenberg, T. Chee, P. Minnis, 2023: Impact of COVID-19-Related Air Traffic Reductions on the Coverage and Radiative Effects of Linear Persistent Contrails Over Conterminous United States and Surrounding Oceanic Routes. Journal of Geophysical Research: Atmospheres, 128(6), e2022JD037554. doi: 10.1029/2022JD037554. The radiative effects of the large-scale air traffic slowdown during April and May 2020 due to the international response to the COVID-19 pandemic are estimated by comparing the coverage (CC), optical properties, and radiative forcing of persistent linear contrails over the conterminous United States and two surrounding oceanic air corridors during the slowdown period and a similar baseline period during 2018 and 2019 when air traffic was unrestricted. The detected CC during the slowdown period decreased by an area-averaged mean of 41% for the three analysis boxes. The retrieved contrail optical properties were mostly similar for both periods. Total shortwave contrail radiative forcings (CRFs) during the slowdown were 34% and 42% smaller for Terra and Aqua, respectively. The corresponding differences for longwave CRF were 33% for Terra and 40% for Aqua. To account for the impact of any changes in the atmospheric environment between baseline and slowdown periods on detected CC amounts, the contrail formation potential (CFP) was computed from reanalysis data. In addition, a filtered CFP (fCFP) was also developed to account for factors that may affect contrail formation and visibility of persistent contrails in satellite imagery. The CFP and fCFP were combined with air traffic data to create empirical models that estimated CC during the baseline and slowdown periods and were compared to the detected CC. The models confirm that decreases in CC and radiative forcing during the slowdown period were mostly due to the reduction in air traffic, and partly due to environmental changes. contrail; COVID pandemic; radiative effects
Minnis, Patrick; Sun-Mack, Sunny; Smith, William L.; Trepte, Qing Z.; Hong, Gang; Chen, Yan; Yost, Christopher R.; Chang, Fu-Lung; Smith, Rita A.; Heck, Patrick W.; Yang, PingMinnis, P., S. Sun-Mack, W. L. Smith, Q. Z. Trepte, G. Hong, Y. Chen, C. R. Yost, F. Chang, R. A. Smith, P. W. Heck, P. Yang, 2023: VIIRS Edition 1 Cloud Properties for CERES, Part 1: Algorithm Adjustments and Results. Remote Sensing, 15(3), 578. doi: 10.3390/rs15030578. Cloud properties are essential for the Clouds and the Earth’s Radiant Energy System (CERES) Project, enabling accurate interpretation of measured broadband radiances, providing a means to understand global cloud-radiation interactions, and constituting an important climate record. Producing consistent cloud retrievals across multiple platforms is critical for generating a multidecadal cloud and radiation record. Techniques used by CERES for retrievals from measurements by the MODerate-Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua platforms are adapted for the application to radiances from the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National Polar-orbiting Partnership to continue the CERES record beyond the MODIS era. The algorithm adjustments account for spectral and channel differences, use revised reflectance models, and set new thresholds for detecting thin cirrus clouds at night. Cloud amounts from VIIRS are less than their MODIS counterparts by 0.016 during the day and 0.026 at night, but trend consistently over the 2012–2020 period. The VIIRS mean liquid water cloud fraction differs by ~0.01 from the MODIS amount. The average cloud heights from VIIRS differ from the MODIS heights by less than 0.2 km, except the VIIRS daytime ice cloud heights, which are 0.4 km higher. The mean VIIRS nonpolar optical depths are 17% (1%) larger (smaller) than those from MODIS for liquid (ice) clouds. The VIIRS cloud hydrometeor sizes are generally smaller than their MODIS counterparts. Discrepancies between the MODIS and VIIRS properties stem from spectral and spatial resolution differences, new tests at night, calibration inconsistencies, and new reflectance models. Many of those differences will be addressed in future editions. cloud; cloud height; cloud optical depth; cloud phase; cloud remote sensing; Clouds and the Earth’s Radiant Energy System (CERES); Visible Infrared Imaging Radiometer Suite (VIIRS); cloud amount; SNPP; Suomi National Polar-orbiting Partnership
Painemal, David; Chellappan, Seethala; Smith Jr., William L.; Spangenberg, Douglas; Park, J. Minnie; Ackerman, Andrew; Chen, Jingyi; Crosbie, Ewan; Ferrare, Richard; Hair, Johnathan; Kirschler, Simon; Li, Xiang-Yu; McComiskey, Allison; Moore, Richard H.; Sanchez, Kevin; Sorooshian, Armin; Tornow, Florian; Voigt, Christiane; Wang, Hailong; Winstead, Edward; Zeng, Xubin; Ziemba, Luke; Zuidema, PaquitaPainemal, D., S. Chellappan, W. L. Smith Jr., D. Spangenberg, J. M. Park, A. Ackerman, J. Chen, E. Crosbie, R. Ferrare, J. Hair, S. Kirschler, X. Li, A. McComiskey, R. H. Moore, K. Sanchez, A. Sorooshian, F. Tornow, C. Voigt, H. Wang, E. Winstead, X. Zeng, L. Ziemba, P. Zuidema, 2023: Wintertime synoptic patterns of midlatitude boundary layer clouds over the western North Atlantic: Climatology and insights from in-situ ACTIVATE observations. Journal of Geophysical Research: Atmospheres, n/a(n/a), e2022JD037725. doi: 10.1029/2022JD037725. The winter synoptic evolution of the western North Atlantic and its influence on the atmospheric boundary layer is described by means of a regime classification based on Self Organizing Maps applied to 12 year of data (2009-2020). The regimes are classified into categories according to daily 600-hPa geopotential height: dominant ridge, trough to ridge eastward transition (trough-ridge), dominant trough, and ridge to trough eastward transition (ridge-trough). A fifth synoptic regime resembles the winter climatological mean. Coherent changes in sea-level pressure and large-scale winds are in concert with the synoptic regimes: 1) the ridge regime is associated with a well-developed anticyclone; 2) the trough-ridge gives rise to a low pressure center over the ocean, ascents, and northerly winds over the coastal zone; 3) trough is associated with the eastward displacement of a cyclone, coastal subsidence, and northerly winds, all representative characteristics of cold-air outbreaks; 4) the ridge-trough regime features the development of an anticyclone and weak coastal winds. Low clouds are characteristic of the trough regime, with both trough and trough-ridge featuring synoptic maxima in cloud droplet number concentration (Nd). The Nd increase is primarily observed near the coast, concomitant with strong surface heat fluxes exceeding by more than 400 W m-2 compared to fluxes further east. Five consecutive days of aircraft observations collected during the ACTIVATE campaign corroborates the climatological characterization, confirming the occurrence of high Nd for days identified as trough. This study emphasizes the role of boundary-layer dynamics and aerosol activation and their roles in modulating cloud microphysics.
Ren, Tong; Yang, Ping; Loeb, Norman G.; Smith Jr., William L.; Minnis, PatrickRen, T., P. Yang, N. G. Loeb, W. L. Smith Jr., P. Minnis, 2023: On the Consistency of Ice Cloud Optical Models for Spaceborne Remote Sensing Applications and Broadband Radiative Transfer Simulations. Journal of Geophysical Research: Atmospheres, 128(20), e2023JD038747. doi: 10.1029/2023JD038747. Aqua satellite Moderate Resolution Imaging Spectroradiometer (MODIS) 1-km observations are collocated with Clouds and the Earth's Radiant Energy System (CERES) fields of view taken during July 2008 afternoon satellite passes over the equatorial western Pacific Ocean. Radiation simulations are compared with collocated CERES observations to better understand the sensitivity of computed fluxes to two ice cloud broadband radiation parameterization schemes and inferred ice cloud characteristics. In particular, the radiation computational schemes and ice cloud property retrievals are based on two respective ice particle models, the MODIS Collection 6 (MC6) aggregate model and a more microphysically consistent two-habit model (THM). The simulation results show that both MC6 and THM overestimate the shortwave (SW) and longwave (LW) cloud radiative effects at the top of the atmosphere, as compared to the CERES observations; the difference between the MC6 and THM-based ice cloud retrievals is too small to compensate for the differences between the two model-based radiation schemes. Therefore, the present finding suggests that broadband radiative simulations are more sensitive to the radiation parameterization scheme than to the input cloud properties retrieved using the corresponding ice cloud particle optical property model.
Yost, Christopher R.; Minnis, Patrick; Sun-Mack, Sunny; Smith, William L.; Trepte, Qing Z.Yost, C. R., P. Minnis, S. Sun-Mack, W. L. Smith, Q. Z. Trepte, 2023: VIIRS Edition 1 Cloud Properties for CERES, Part 2: Evaluation with CALIPSO. Remote Sensing, 15(5), 1349. doi: 10.3390/rs15051349. The decades-long Clouds and Earth’s Radiant Energy System (CERES) Project includes both cloud and radiation measurements from instruments on the Aqua, Terra, and Suomi National Polar-orbiting Partnership (SNPP) satellites. To build a reliable long-term climate data record, it is important to determine the accuracies of the parameters retrieved from the sensors on each satellite. Cloud amount, phase, and top height derived from radiances taken by the Visible Infrared Imaging Radiometer Suite (VIIRS) on the SNPP are evaluated relative to the same quantities determined from measurements by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on the Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) spacecraft. The accuracies of the VIIRS cloud fractions are found to be as good as or better than those for the CERES amounts determined from Aqua MODerate-resolution Imaging Spectroradiometer (MODIS) data and for cloud fractions estimated by two other operational algorithms. Sensitivities of cloud fraction bias to CALIOP resolution, matching time window, and viewing zenith angle are examined. VIIRS cloud phase biases are slightly greater than their CERES MODIS counterparts. A majority of cloud phase errors are due to multilayer clouds during the daytime and supercooled liquid water clouds at night. CERES VIIRS cloud-top height biases are similar to those from CERES MODIS, except for ice clouds, which are smaller than those from CERES MODIS. CERES VIIRS cloud phase and top height uncertainties overall are very similar to or better than several operational algorithms, but fail to match the accuracies of experimental machine learning techniques. The greatest errors occur for multilayered clouds and clouds with phase misclassification. Cloud top heights can be improved by relaxing tropopause constraints, improving lapse-rate to model temperature profiles, and accounting for multilayer clouds. Other suggestions for improving the retrievals are also discussed. validation; cloud; CALIPSO; cloud height; cloud optical depth; cloud phase; cloud remote sensing; Clouds and the Earth’s Radiant Energy System (CERES); Suomi National Polar-orbiting Partnership (SNPP); Visible Infrared Imaging Radiometer Suite (VIIRS)

2022

Scott, Ryan C.; Rose, Fred G.; Stackhouse, Paul W.; Loeb, Norman G.; Kato, Seiji; Doelling, David R.; Rutan, David A.; Taylor, Patrick C.; Smith, William L.Scott, R. C., F. G. Rose, P. W. Stackhouse, N. G. Loeb, S. Kato, D. R. Doelling, D. A. Rutan, P. C. Taylor, W. L. Smith, 2022: Clouds and the Earth’s Radiant Energy System (CERES) Cloud Radiative Swath (CRS) Edition 4 Data Product. J. Atmos. Oceanic Technol., 39(11), 1781-1797. doi: 10.1175/JTECH-D-22-0021.1. Abstract Satellite observations from Clouds and the Earth’s Radiant Energy System (CERES) radiometers have produced over two decades of world-class data documenting time–space variations in Earth’s top-of-atmosphere (TOA) radiation budget. In addition to energy exchanges among Earth and space, climate studies require accurate information on radiant energy exchanges at the surface and within the atmosphere. The CERES Cloud Radiative Swath (CRS) data product extends the standard Single Scanner Footprint (SSF) data product by calculating a suite of radiative fluxes from the surface to TOA at the instantaneous CERES footprint scale using the NASA Langley Fu–Liou radiative transfer model. Here, we describe the CRS flux algorithm and evaluate its performance against a network of ground-based measurements and CERES TOA observations. CRS all-sky downwelling broadband fluxes show significant improvements in surface validation statistics relative to the parameterized fluxes on the SSF product, including a ∼30%–40% (∼20%) reduction in SW↓ (LW↓) root-mean-square error (RMSΔ), improved correlation coefficients, and the lowest SW↓ bias over most surface types. RMSΔ and correlation statistics improve over five different surface types under both overcast and clear-sky conditions. The global mean computed TOA outgoing LW radiation (OLR) remains within

2021

Benjamin, Stanley G.; James, Eric P.; Hu, Ming; Alexander, Curtis R.; Ladwig, Therese T.; Brown, John M.; Weygandt, Stephen S.; Turner, David D.; Minnis, Patrick; Smith, William L.; Heidinger, Andrew K.Benjamin, S. G., E. P. James, M. Hu, C. R. Alexander, T. T. Ladwig, J. M. Brown, S. S. Weygandt, D. D. Turner, P. Minnis, W. L. Smith, A. K. Heidinger, 2021: Stratiform Cloud-Hydrometeor Assimilation for HRRR and RAP Model Short-Range Weather Prediction. Mon. Wea. Rev., 149(8), 2673-2694. doi: 10.1175/MWR-D-20-0319.1. AbstractAccurate cloud and precipitation forecasts are a fundamental component of short-range data assimilation/model prediction systems such as the NOAA 3-km High-Resolution Rapid Refresh (HRRR) or the 13-km Rapid Refresh (RAP). To reduce cloud and precipitation spinup problems, a nonvariational assimilation technique for stratiform clouds was developed within the Gridpoint Statistical Interpolation (GSI) data assimilation system. One goal of this technique is retention of observed stratiform cloudy and clear 3D volumes into the subsequent model forecast. The cloud observations used include cloud-top data from satellite brightness temperatures, surface-based ceilometer data, and surface visibility. Quality control, expansion into spatial information content, and forward operators are described for each observation type. The projection of data from these observation types into an observation-based cloud-information 3D gridded field is accomplished via identification of cloudy, clear, and cloud-unknown 3D volumes. Updating of forecast background fields is accomplished through clearing and building of cloud water and cloud ice with associated modifications to water vapor and temperature. Impact of the cloud assimilation on short-range forecasts is assessed with a set of retrospective experiments in warm and cold seasons using the RAPv5 model. Short-range (1–9 h) forecast skill is improved in both seasons for cloud ceiling and visibility and for 2-m temperature in daytime and with mixed results for other measures. Two modifications were introduced and tested with success: use of prognostic subgrid-scale cloud fraction to condition cloud building (in response to a high bias) and removal of a WRF-based rebalancing.
Chen, Hong; Schmidt, Sebastian; King, Michael D.; Wind, Galina; Bucholtz, Anthony; Reid, Elizabeth A.; Segal-Rozenhaimer, Michal; Smith, William L.; Taylor, Patrick C.; Kato, Seiji; Pilewskie, PeterChen, H., S. Schmidt, M. D. King, G. Wind, A. Bucholtz, E. A. Reid, M. Segal-Rozenhaimer, W. L. Smith, P. C. Taylor, S. Kato, P. Pilewskie, 2021: The effect of low-level thin arctic clouds on shortwave irradiance: evaluation of estimates from spaceborne passive imagery with aircraft observations. Atmospheric Measurement Techniques, 14(4), 2673-2697. doi: 10.5194/amt-14-2673-2021. Abstract. Cloud optical properties such as optical thickness along with surface albedo are important inputs for deriving the shortwave radiative effects of clouds from spaceborne remote sensing. Owing to insufficient knowledge about the snow or ice surface in the Arctic, cloud detection and the retrieval products derived from passive remote sensing, such as from the Moderate Resolution Imaging Spectroradiometer (MODIS), are difficult to obtain with adequate accuracy – especially for low-level thin clouds, which are ubiquitous in the Arctic. This study aims at evaluating the spectral and broadband irradiance calculated from MODIS-derived cloud properties in the Arctic using aircraft measurements collected during the Arctic Radiation-IceBridge Sea and Ice Experiment (ARISE), specifically using the upwelling and downwelling shortwave spectral and broadband irradiance measured by the Solar Spectral Flux Radiometer (SSFR) and the BroadBand Radiometer system (BBR). This starts with the derivation of surface albedo from SSFR and BBR, accounting for the heterogeneous surface in the marginal ice zone (MIZ) with aircraft camera imagery, followed by subsequent intercomparisons of irradiance measurements and radiative transfer calculations in the presence of thin clouds. It ends with an attribution of any biases we found to causes, based on the spectral dependence and the variations in the measured and calculated irradiance along the flight track. The spectral surface albedo derived from the airborne radiometers is consistent with prior ground-based and airborne measurements and adequately represents the surface variability for the study region and time period. Somewhat surprisingly, the primary error in MODIS-derived irradiance fields for this study stems from undetected clouds, rather than from the retrieved cloud properties. In our case study, about 27 % of clouds remained undetected, which is attributable to clouds with an optical thickness of less than 0.5. We conclude that passive imagery has the potential to accurately predict shortwave irradiances in the region if the detection of thin clouds is improved. Of at least equal importance, however, is the need for an operational imagery-based surface albedo product for the polar regions that adequately captures its temporal, spatial, and spectral variability to estimate cloud radiative effects from spaceborne remote sensing.
Kang, Litai; Marchand, Roger; Smith, WilliamKang, L., R. Marchand, W. Smith, 2021: Evaluation of MODIS and Himawari-8 Low Clouds Retrievals Over the Southern Ocean With In Situ Measurements From the SOCRATES Campaign. Earth and Space Science, 8(3), e2020EA001397. doi: https://doi.org/10.1029/2020EA001397. Aircraft observations collected during the Southern Ocean Cloud Radiation Aerosol Transport Experimental Study in January-February of 2018 are used to evaluate cloud properties from three satellite-imager datasets: (1) the Moderate Resolution Imaging Spectroradiometer level 2 (collection 6.1) cloud product, (2) the CERES-MODIS Edition 4 cloud product, and (3) the NASA SatCORPS Himawari-8 cloud product. Overall the satellite retrievals compare well with the in situ observations, with little bias and modest to good correlation coefficients when considering all aircraft profiles for which there are coincident MODIS observations. The Himawari-8 product does, however, show a statistically significant mean bias of about 1.2 μm for effective radius (re) and 2.6 for optical depth (τ) when applied to a larger set of profiles with coincident Himawari-8 observations. The low overall mean-bias in the re retrievals is due in part to compensating errors between cases that are non- or lightly precipitating, with cases that have heavier precipitation. re is slightly biased high (by about 0.5–1.0 μm) for non- and lightly precipitating cases and biased low by about 3–4 μm for heavily precipitating cases when precipitation exits near cloud top. The bias in non- and lightly precipitating conditions is due to (at least in part) having assumed a drop size distribution in the retrieval that is too broad. These biases in the re ultimately propagate into the retrieved liquid water path and number concentration. clouds; MODIS; remote sensing; southern ocean; himawari-8; SOCRATES
Kato, Seiji; Rose, Fred G.; Chang, Fu-Lung; Painemal, David; Smith, William L.Kato, S., F. G. Rose, F. Chang, D. Painemal, W. L. Smith, 2021: Evaluation of Regional Surface Energy Budget Over Ocean Derived From Satellites. Frontiers in Marine Science, 8, 1264. doi: 10.3389/fmars.2021.688299. The energy balance equation of an atmospheric column indicates that two approaches are possible to compute regional net surface energy flux. The first approach is to use the sum of surface energy flux components Fnet,c and the second approach is to use net top-of-atmosphere (TOA) irradiance and horizontal energy transport by the atmosphere Fnet,t. When regional net energy flux is averaged over the global ocean, Fnet,c and Fnet,t are, respectively, 16 and 2 Wm–2, both larger than the ocean heating rate derived from ocean temperature measurements. The difference is larger than the estimated uncertainty of Fnet,t of 11 Wm–2. Larger regional differences between Fnet,c and Fnet,t exist over tropical ocean. The seasonal variability of energy flux components averaged between 45°N and 45°S ocean reveals that the surface provides net energy to the atmosphere from May to July. These two examples demonstrates that the energy balance can be used to assess the quality of energy flux data products.
Painemal, David; Corral, Andrea F.; Sorooshian, Armin; Brunke, Michael A.; Chellappan, Seethala; Gorooh, Vesta Afzali; Ham, Seung-Hee; O'Neill, Larry; Smith, William L.; Tselioudis, George; Wang, Hailong; Zeng, Xubin; Zuidema, PaquitaPainemal, D., A. F. Corral, A. Sorooshian, M. A. Brunke, S. Chellappan, V. A. Gorooh, S. Ham, L. O'Neill, W. L. Smith, G. Tselioudis, H. Wang, X. Zeng, P. Zuidema, 2021: An Overview of Atmospheric Features Over the Western North Atlantic Ocean and North American East Coast—Part 2: Circulation, Boundary Layer, and Clouds. Journal of Geophysical Research: Atmospheres, 126(6), e2020JD033423. doi: https://doi.org/10.1029/2020JD033423. The Western North Atlantic Ocean (WNAO) is a complex land-ocean-atmosphere system that experiences a broad range of atmospheric phenomena, which in turn drive unique aerosol transport pathways, cloud morphologies, and boundary layer variability. This work, Part 2 of a 2-part paper series, provides an overview of the atmospheric circulation, boundary layer variability, three-dimensional cloud structure, and precipitation over the WNAO; the companion paper (Part 1) focused on chemical characterization of aerosols, gases, and wet deposition. Seasonal changes in atmospheric circulation and sea surface temperature explain a clear transition in cloud morphologies from small shallow cumulus clouds, convective clouds, and tropical storms in summer, to stratus/stratocumulus and multilayer cloud systems associated with winter storms. Synoptic variability in cloud fields is estimated using satellite-based weather states, and the role of postfrontal conditions (cold-air outbreaks) in the development of stratiform clouds is further analyzed. Precipitation is persistent over the ocean, with a regional peak over the Gulf Stream path, where offshore sea surface temperature gradients are large and surface fluxes reach a regional peak. Satellite data show a clear annual cycle in cloud droplet number concentration with maxima (minima) along the coast in winter (summer), suggesting a marked annual cycle in aerosol-cloud interactions. Compared with satellite cloud retrievals, four climate models qualitatively reproduce the annual cycle in cloud cover and liquid water path, but with large discrepancies across models, especially in the extratropics. The paper concludes with a summary of outstanding issues and recommendations for future work. air-sea interactions; atmospheric boundary layer; climate model evaluation; stratiform clouds; Western North Atlantic
Painemal, David; Spangenberg, Douglas; Smith Jr., William L.; Minnis, Patrick; Cairns, Brian; Moore, Richard H.; Crosbie, Ewan; Robinson, Claire; Thornhill, Kenneth L.; Winstead, Edward L.; Ziemba, LukePainemal, D., D. Spangenberg, W. L. Smith Jr., P. Minnis, B. Cairns, R. H. Moore, E. Crosbie, C. Robinson, K. L. Thornhill, E. L. Winstead, L. Ziemba, 2021: Evaluation of satellite retrievals of liquid clouds from the GOES-13 Imager and MODIS over the midlatitude North Atlantic during NAAMES campaign. Atmospheric Measurement Techniques Discussions, 1-23. doi: 10.5194/amt-2021-7. Abstract. Satellite retrievals of cloud droplet effective radius (re) and optical depth (t) from the Thirteenth Geostationary Operational Environmental Satellite (GOES-13), and the MOderate resolution Imaging Spectroradiometer (MODIS) onboard Aqua and Terra are evaluated with airborne data collected over the midlatitude boundary layer during the North Atlantic Aerosols and Marine Ecosystems Study (NAAMES). The airborne dataset comprises in-situ re from the Cloud Droplet Probe (CDP) and remotely sensed re and t from the airborne Research Scanning Polarimeter (RSP). GOES-13 and MODIS (Aqua and Terra) re values are systematically greater than those from the CDP and RSP by at least 4.8 um (GOES-13) and 1.7 um (MODIS) despite relatively high linear correlations coefficients (r = 0.52–0.68). In contrast, the satellite t underestimates its RSP counterpart by −3.0, with r = 0.76–077. Overall, MODIS yields better agreement with airborne data than GOES-13, with biases consistent with those reported for subtropical stratocumulus clouds. While the negative bias in satellite t is mostly due to the retrievals having been collected in highly heterogeneous cloud scenes, the causes for the positive bias in satellite re, especially for GOES-13, are more complex. Although the high viewing zenith angle (~65°) and coarser pixel resolution for GOES-13 could explain a re bias of at least 0.7 um, the higher GOES-13 re bias relative to that from MODIS is likely rooted in other factors. In this regard, a near monotonic increase was also observed in GOES-13 re up to 1.0 um with satellite scattering angle (ϴ) over the angular range 116°–165°, that is, re increases toward the backscattering direction. Understanding the variations of re with ϴ will require the combined use of theoretical computations along with inter-comparisons of satellite retrievals derived from sensors with dissimilar viewing geometry.

2020

Loeb, Norman G.; Rose, Fred G.; Kato, Seiji; Rutan, David A.; Su, Wenying; Wang, Hailan; Doelling, David R.; Smith, William L.; Gettelman, AndrewLoeb, N. G., F. G. Rose, S. Kato, D. A. Rutan, W. Su, H. Wang, D. R. Doelling, W. L. Smith, A. Gettelman, 2020: Toward a Consistent Definition between Satellite and Model Clear-Sky Radiative Fluxes. J. Climate, 33(1), 61-75. doi: 10.1175/JCLI-D-19-0381.1. A new method of determining clear-sky radiative fluxes from satellite observations for climate model evaluation is presented. The method consists of applying adjustment factors to existing satellite clear-sky broadband radiative fluxes that make the observed and simulated clear-sky flux definitions more consistent. The adjustment factors are determined from the difference between observation-based radiative transfer model calculations of monthly mean clear-sky fluxes obtained by ignoring clouds in the atmospheric column and by weighting hourly mean clear-sky fluxes with imager-based clear-area fractions. The global mean longwave (LW) adjustment factor is −2.2 W m−2 at the top of the atmosphere and 2.7 W m−2 at the surface. The LW adjustment factors are pronounced at high latitudes during winter and in regions with high upper-tropospheric humidity and cirrus cloud cover, such as over the west tropical Pacific, and the South Pacific and intertropical convergence zones. In the shortwave (SW), global mean adjustment is 0.5 W m−2 at TOA and −1.9 W m−2 at the surface. It is most pronounced over sea ice off of Antarctica and over heavy aerosol regions, such as eastern China. However, interannual variations in the regional SW and LW adjustment factors are small compared to those in cloud radiative effect. After applying the LW adjustment factors, differences in zonal mean cloud radiative effect between observations and climate models decrease markedly between 60°S and 60°N and poleward of 65°N. The largest regional improvements occur over the west tropical Pacific and Indian Oceans. In contrast, the impact of the SW adjustment factors is much smaller.
Minnis, Patrick; Sun-Mack, Szedung; Chen, Yan; Chang, Fu-Lung; Yost, Christopher R.; Smith, William L.; Heck, Patrick W.; Arduini, Robert F.; Bedka, Sarah T.; Yi, Yuhong; Hong, Gang; Jin, Zhonghai; Painemal, David; Palikonda, Rabindra; Scarino, Benjamin R.; Spangenberg, Douglas A.; Smith, Rita A.; Trepte, Qing Z.; Yang, Ping; Xie, YuMinnis, P., S. Sun-Mack, Y. Chen, F. Chang, C. R. Yost, W. L. Smith, P. W. Heck, R. F. Arduini, S. T. Bedka, Y. Yi, G. Hong, Z. Jin, D. Painemal, R. Palikonda, B. R. Scarino, D. A. Spangenberg, R. A. Smith, Q. Z. Trepte, P. Yang, Y. Xie, 2020: CERES MODIS Cloud Product Retrievals for Edition 4–Part I: Algorithm Changes. IEEE Transactions on Geoscience and Remote Sensing, 1-37. doi: 10.1109/TGRS.2020.3008866. The Edition 2 (Ed2) cloud property retrieval algorithm system was upgraded and applied to the MODerate-resolution Imaging Spectroradiometer (MODIS) data for the Clouds and the Earth's Radiant Energy System (CERES) Edition 4 (Ed4) products. New calibrations for solar channels and the use of the 1.24-μm channel for cloud optical depth (COD) over snow improve the daytime consistency between Terra and Aqua MODIS retrievals. Use of additional spectral channels and revised logic enhanced the cloud-top phase retrieval accuracy. A new ice crystal reflectance model and a CO₂-channel algorithm retrieved higher ice clouds, while a new regional lapse rate technique produced more accurate water cloud heights than in Ed2. Ice cloud base heights are more accurate due to a new cloud thickness parameterization. Overall, CODs increased, especially over the polar (PO) regions. The mean particle sizes increased slightly for water clouds, but more so for ice clouds in the PO areas. New experimental parameters introduced in Ed4 are limited in utility, but will be revised for the next CERES edition. As part of the Ed4 retrieval evaluation, the average properties are compared with those from other algorithms and the differences between individual reference data and matched Ed4 retrievals are explored. Part II of this article provides a comprehensive, objective evaluation of selected parameters. More accurate interpretation of the CERES radiation measurements has resulted from the use of the Ed4 cloud properties. cloud; Meteorology; MODIS; Optical imaging; Integrated optics; Clouds; Ice; Climate; Cloud computing; cloud height; cloud optical depth (COD); cloud phase; validation.; cloud particle size; cloud remote sensing MODerate-resolution Imaging Spectroradiometer (MODIS); clouds and the Earth's radiant energy system (CERES)
Painemal, David; Chang, Fu-Lung; Ferrare, Richard; Burton, Sharon; Li, Zhujun; Smith Jr., William L.; Minnis, Patrick; Feng, Yan; Clayton, MarianPainemal, D., F. Chang, R. Ferrare, S. Burton, Z. Li, W. L. Smith Jr., P. Minnis, Y. Feng, M. Clayton, 2020: Reducing uncertainties in satellite estimates of aerosol–cloud interactions over the subtropical ocean by integrating vertically resolved aerosol observations. Atmospheric Chemistry and Physics, 20(12), 7167-7177. doi: https://doi.org/10.5194/acp-20-7167-2020. Abstract. Satellite quantification of aerosol effects on clouds relies on aerosol optical depth (AOD) as a proxy for aerosol concentration or cloud condensation nuclei (CCN). However, the lack of error characterization of satellite-based results hampers their use for the evaluation and improvement of global climate models. We show that the use of AOD for assessing aerosol–cloud interactions (ACIs) is inadequate over vast oceanic areas in the subtropics. Instead, we postulate that a more physical approach that consists of matching vertically resolved aerosol data from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite at the cloud-layer height with Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua cloud retrievals reduces uncertainties in satellite-based ACI estimates. Combined aerosol extinction coefficients (σ) below cloud top (σBC) from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and cloud droplet number concentrations (Nd) from MODIS Aqua yield high correlations across a broad range of σBC values, with σBC quartile correlations ≥0.78. In contrast, CALIOP-based AOD yields correlations with MODIS Nd of 0.54–0.62 for the two lower AOD quartiles. Moreover, σBC explains 41 % of the spatial variance in MODIS Nd, whereas AOD only explains 17 %, primarily caused by the lack of spatial covariability in the eastern Pacific. Compared with σBC, near-surface σ weakly correlates in space with MODIS Nd, accounting for a 16 % variance. It is concluded that the linear regression calculated from ln(Nd)–ln(σBC) (the standard method for quantifying ACIs) is more physically meaningful than that derived from the Nd–AOD pair.
Scarino, Benjamin R.; Bedka, Kristopher; Bhatt, Rajendra; Khlopenkov, Konstantin; Doelling, David R.; Smith Jr., William L.Scarino, B. R., K. Bedka, R. Bhatt, K. Khlopenkov, D. R. Doelling, W. L. Smith Jr., 2020: A kernel-driven BRDF model to inform satellite-derived visible anvil cloud detection. Atmospheric Measurement Techniques, 13(10), 5491-5511. doi: https://doi.org/10.5194/amt-13-5491-2020. Abstract. Satellites routinely observe deep convective clouds across the world. The cirrus outflow from deep convection, commonly referred to as anvil cloud, has a ubiquitous appearance in visible and infrared (IR) wavelength imagery. Anvil clouds appear as broad areas of highly reflective and cold pixels relative to the darker and warmer clear sky background, often with embedded textured and colder pixels that indicate updrafts and gravity waves. These characteristics would suggest that creating automated anvil cloud detection products useful for weather forecasting and research should be straightforward, yet in practice such product development can be challenging. Some anvil detection methods have used reflectance or temperature thresholding, but anvil reflectance varies significantly throughout a day as a function of combined solar illumination and satellite viewing geometry, and anvil cloud top temperature varies as a function of convective equilibrium level and tropopause height. This paper highlights a technique for facilitating anvil cloud detection based on visible observations that relies on comparative analysis with expected cloud reflectance for a given set of angles, thereby addressing limitations of previous methods. A 1-year database of anvil-identified pixels, as determined from IR observations, from several geostationary satellites was used to construct a bidirectional reflectance distribution function (BRDF) model to quantify typical anvil reflectance across almost all expected viewing, solar, and azimuth angle configurations, in addition to the reflectance uncertainty for each angular bin. Application of the BRDF model for cloud optical depth retrieval in deep convection is described as well.
Wall, Casey J.; Norris, Joel R.; Gasparini, Blaž; Smith, William L.; Thieman, Mandana M.; Sourdeval, OdranWall, C. J., J. R. Norris, B. Gasparini, W. L. Smith, M. M. Thieman, O. Sourdeval, 2020: Observational Evidence that Radiative Heating Modifies the Life Cycle of Tropical Anvil Clouds. J. Climate, 33(20), 8621–8640. doi: 10.1175/JCLI-D-20-0204.1.
Yost, Christopher R.; Minnis, Patrick; Sun-Mack, Sunny; Chen, Yan; Smith, William L.Yost, C. R., P. Minnis, S. Sun-Mack, Y. Chen, W. L. Smith, 2020: CERES MODIS Cloud Product Retrievals for Edition 4–Part II: Comparisons to CloudSat and CALIPSO. IEEE Transactions on Geoscience and Remote Sensing, 1-30. doi: 10.1109/TGRS.2020.3015155. Assessments of the Clouds and the Earth's Radiant Energy System Edition 4 (Ed4) cloud retrievals are critical for climate studies. Ed4 cloud parameters are evaluated using instruments in the A-Train Constellation. Cloud-Aerosol LiDAR with Orthogonal Polarization (CALIOP) and Cloud Profiling Radar (CPR) retrievals are compared with Ed4 retrievals from the Aqua Moderate-Resolution Imaging Spectroradiometer (MODIS) as a function of the CALIOP horizontal averaging (HA) scale. Regardless of the HA scale, MODIS daytime (nighttime) water cloud fraction (CF) is greater (less) than that from CALIOP. MODIS ice CF is less than CALIOP overall, with the largest differences in polar regions. Ed4 and CALIOP retrieve the same cloud phase in 70%-98% of simultaneous observations depending on the time of day, surface conditions, HA scales, and type of cloud vertical structure. Mean cloud top height (CTH) differences for single-layer water clouds over snow-/ice-free surfaces are less than 100 m. Base altitude positive biases of 170-460 m may be impacted by CPR detection limitations. Average MODIS ice CTHs are underestimated by 70 m for some deep convective clouds and up to 2.2 km for thin cirrus. Ice cloud base altitudes are typically underestimated (overestimated) during daytime (nighttime). MODIS and CALIOP cirrus optical depths over oceans are within 46% and 5% for daytime and nighttime observations, respectively. Ice water path differences depend on the CALIOP retrieval version and warrant further investigation. Except for daytime cirrus optical depth, Ed4 cloud property retrievals are at least as accurate as other long-term operational cloud property retrieval systems. cloud; Clouds and the Earth's Radiant Energy System (CERES); cloud remote sensing; Climate; cloud height; cloud optical depth (COD); cloud phase; Cloud-Aerosol LiDAR and Infrared Pathfinder Satellite Observation (CALIPSO); MODerate-resolution Imaging Spectroradiometer (MODIS); validation.

2019

Duda, David P.; Bedka, Sarah T.; Minnis, Patrick; Spangenberg, Douglas; Khlopenkov, Konstantin; Chee, Thad; Smith Jr., William L.Duda, D. P., S. T. Bedka, P. Minnis, D. Spangenberg, K. Khlopenkov, T. Chee, W. L. Smith Jr., 2019: Northern Hemisphere contrail properties derived from Terra and Aqua MODIS data for 2006 and 2012. Atmospheric Chemistry and Physics, 19(8), 5313-5330. doi: 10.5194/acp-19-5313-2019. Abstract. Linear contrail coverage, optical property, and radiative forcing data over the Northern Hemisphere (NH) are derived from a year (2012) of Terra and Aqua Moderate-resolution Imaging Spectroradiometer (MODIS) imagery and compared with previously published 2006 results (Duda et al., 2013; Bedka et al., 2013; Spangenberg et al., 2013) using a consistent retrieval methodology. Differences in the observed Terra-minus-Aqua screened contrail coverage and patterns in the 2012 annual-mean air traffic estimated with respect to satellite overpass time suggest that most contrails detected by the contrail detection algorithm (CDA) form approximately 2 h before overpass time. The 2012 screened NH contrail coverage (Mask B) shows a relative 3 % increase compared to 2006 data for Terra and increases by almost 7 % for Aqua, although the differences are not expected to be statistically significant. A new post-processing algorithm added to the contrail mask processing estimated that the total contrail cirrus coverage visible in the MODIS imagery may be 3 to 4 times larger than the linear contrail coverage detected by the CDA. This estimate is similar in magnitude to the spreading factor estimated by Minnis et al. (2013). Contrail property retrievals of the 2012 data indicate that both contrail optical depth and contrail effective diameter decreased approximately 10 % between 2006 and 2012. The decreases may be attributed to better background cloudiness characterization, changes in the waypoint screening, or changes in contrail temperature. The total mean contrail radiative forcings (TCRFs) for all 2012 Terra observations were −6.3, 14.3, and 8.0 mW m−2 for the shortwave (SWCRF), longwave (LWCRF), and net forcings, respectively. These values are approximately 20 % less than the corresponding 2006 Terra estimates. The decline in TCRF results from the decrease in normalized CRF, partially offset by the 3 % increase in overall contrail coverage in 2012. The TCRFs for 2012 Aqua are similar, −6.4, 15.5, and 9.0 mW m−2 for shortwave, longwave, and net radiative forcing. The strong correlation between the relative changes in both total SWCRF and LWCRF between 2006 and 2012 and the corresponding relative changes in screened contrail coverage over each air traffic region suggests that regional changes in TCRF from year to year are dominated by year-to-year changes in contrail coverage over each area.
Loeb, Norman G.; Wang, Hailan; Rose, Fred G.; Kato, Seiji; Smith, William L.; Sun-Mack, SunnyLoeb, N. G., H. Wang, F. G. Rose, S. Kato, W. L. Smith, S. Sun-Mack, 2019: Decomposing Shortwave Top-of-Atmosphere and Surface Radiative Flux Variations in Terms of Surface and Atmospheric Contributions. J. Climate, 32(16), 5003–501. doi: 10.1175/JCLI-D-18-0826.1. A diagnostic tool for determining surface and atmospheric contributions to interannual variations in top-of-atmosphere (TOA) reflected shortwave (SW) and net downward SW surface radiative fluxes is introduced. The method requires only upward and downward radiative fluxes at the TOA and surface as input and therefore can readily be applied to both satellite-derived and model-generated radiative fluxes. Observations from the Clouds and the Earth’s Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) Ed4.0 product show that 81% of the monthly variability in global mean reflected SW TOA flux anomalies is associated with atmospheric variations (mainly clouds), 6% is from surface variations, and 13% is from atmosphere-surface covariability. Over the Arctic Ocean, most of the variability in both reflected SW TOA flux and net downward SW surface flux anomalies is explained by variations in sea-ice and cloud fraction alone (r2=0.94). Compared to CERES, variability in two reanalyses—ECMWF Interim Reanalysis (ERA-Interim) and NASA’s Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2)—show large differences in the regional distribution of variance for both the atmospheric and surface contributions to anomalies in net downward SW surface flux. For MERRA-2 the atmospheric contribution is 17% too large compared to CERES while ERA-Interim underestimates the variance by 15%. The difference is mainly due to how cloud variations are represented in the reanalyses. The overall surface contribution in both ERA-Interim and MERRA- 2 is smaller than CERES EBAF by 15% for ERA-Interim and 58% for MERRA-2, highlighting limitations of the reanalyses in representing surface albedo variations and their influence on SW radiative fluxes.
Saito, Masanori; Yang, Ping; Hu, Yongxiang; Liu, Xu; Loeb, Norman; Smith, William L.; Minnis, PatrickSaito, M., P. Yang, Y. Hu, X. Liu, N. Loeb, W. L. Smith, P. Minnis, 2019: An Efficient Method for Microphysical Property Retrievals in Vertically Inhomogeneous Marine Water Clouds Using MODIS-CloudSat Measurements. Journal of Geophysical Research: Atmospheres, 124(4), 2174-2193. doi: 10.1029/2018JD029659. An efficient method is developed to infer cloud optical thickness (COT) and cloud droplet effective radius (CDER) of marine water clouds from Moderate Resolution Imaging Spectroradiometer (MODIS) and CloudSat measurements, incorporating droplet size vertical inhomogeneity. Empirical orthogonal function (EOF) analysis is employed to reduce the degrees of freedom of the droplet size profile. The first two EOFs can explain 94% of the variability in the droplet size profile. Compared to the existing bispectral CDER retrieval from MODIS assuming plane parallel vertically homogeneous clouds, the new retrieval produces smaller CDER values in clouds in which the adiabatic growth process is dominant and larger CDER values in clouds in which the collision-coalescence process is dominant. To evaluate the performance of the retrieval algorithm, we compare retrieved COT and CDER in this study with their MODIS and CloudSat counterparts on a pixel-by-pixel basis. CDER retrieval based on the vertically homogeneous assumption may be underestimated by 30% due to droplet size vertical inhomogeneity when COT is large and the collision-coalescence process is dominant in the cloud. Retrieved CDER in conjunction with the two scores for EOFs can reconstruct the vertical profile of CDER, which is useful for cloud microphysical process studies. Furthermore, potential expansion of this algorithm to MODIS pixels without CloudSat collocations is discussed. remote sensing; droplet size; EOF; marine water clouds
Sorooshian, Armin; Anderson, Bruce; Bauer, Susanne E.; Braun, Rachel A.; Cairns, Brian; Crosbie, Ewan; Dadashazar, Hossein; Diskin, Glenn; Ferrare, Richard; Flagan, Richard C.; Hair, Johnathan; Hostetler, Chris; Jonsson, Haflidi H.; Kleb, Mary M.; Liu, Hongyu; MacDonald, Alexander B.; McComiskey, Allison; Moore, Richard; Painemal, David; Russell, Lynn M.; Seinfeld, John H.; Shook, Michael; Smith, William L.; Thornhill, Kenneth; Tselioudis, George; Wang, Hailong; Zeng, Xubin; Zhang, Bo; Ziemba, Luke; Zuidema, PaquitaSorooshian, A., B. Anderson, S. E. Bauer, R. A. Braun, B. Cairns, E. Crosbie, H. Dadashazar, G. Diskin, R. Ferrare, R. C. Flagan, J. Hair, C. Hostetler, H. H. Jonsson, M. M. Kleb, H. Liu, A. B. MacDonald, A. McComiskey, R. Moore, D. Painemal, L. M. Russell, J. H. Seinfeld, M. Shook, W. L. Smith, K. Thornhill, G. Tselioudis, H. Wang, X. Zeng, B. Zhang, L. Ziemba, P. Zuidema, 2019: Aerosol–Cloud–Meteorology Interaction Airborne Field Investigations: Using Lessons Learned from the U.S. West Coast in the Design of ACTIVATE off the U.S. East Coast. Bull. Amer. Meteor. Soc., 100(8), 1511-1528. doi: 10.1175/BAMS-D-18-0100.1. We report on a multiyear set of airborne field campaigns (2005–16) off the California coast to examine aerosols, clouds, and meteorology, and how lessons learned tie into the upcoming NASA Earth Venture Suborbital (EVS-3) campaign: Aerosol Cloud meTeorology Interactions oVer the western ATlantic Experiment (ACTIVATE; 2019–23). The largest uncertainty in estimating global anthropogenic radiative forcing is associated with the interactions of aerosol particles with clouds, which stems from the variability of cloud systems and the multiple feedbacks that affect and hamper efforts to ascribe changes in cloud properties to aerosol perturbations. While past campaigns have been limited in flight hours and the ability to fly in and around clouds, efforts sponsored by the Office of Naval Research have resulted in 113 single aircraft flights (>500 flight hours) in a fixed region with warm marine boundary layer clouds. All flights used nearly the same payload of instruments on a Twin Otter to fly below, in, and above clouds, producing an unprecedented dataset. We provide here i) an overview of statistics of aerosol, cloud, and meteorological conditions encountered in those campaigns and ii) quantification of model-relevant metrics associated with aerosol–cloud interactions leveraging the high data volume and statistics. Based on lessons learned from those flights, we describe the pragmatic innovation in sampling strategy (dual-aircraft approach with combined in situ and remote sensing) that will be used in ACTIVATE to generate a dataset that can advance scientific understanding and improve physical parameterizations for Earth system and weather forecasting models, and for assessing next-generation remote sensing retrieval algorithms.
Trepte, Q. Z.; Minnis, P.; Sun-Mack, S.; Yost, C. R.; Chen, Y.; Jin, Z.; Hong, G.; Chang, F.; Smith, W. L.; Bedka, K. M.; Chee, T. L.Trepte, Q. Z., P. Minnis, S. Sun-Mack, C. R. Yost, Y. Chen, Z. Jin, G. Hong, F. Chang, W. L. Smith, K. M. Bedka, T. L. Chee, 2019: Global Cloud Detection for CERES Edition 4 Using Terra and Aqua MODIS Data. IEEE Transactions on Geoscience and Remote Sensing, 1-40. doi: 10.1109/TGRS.2019.2926620. The Clouds and Earth's Radiant Energy System (CERES) has been monitoring clouds and radiation since 2000 using algorithms developed before 2002 for CERES Edition 2 (Ed2) products. To improve cloud amount accuracy, CERES Edition 4 (Ed4) applies revised algorithms and input data to Terra and Aqua MODerate-resolution Imaging Spectroradiometer (MODIS) radiances. The Ed4 cloud mask uses 5-7 additional channels, new models for clear-sky ocean and snow/ice-surface radiances, and revised Terra MODIS calibrations. Mean Ed4 daytime and nighttime cloud amounts exceed their Ed2 counterparts by 0.035 and 0.068. Excellent consistency between average Aqua and Terra cloud fraction is found over nonpolar regions. Differences over polar regions are likely due to unresolved calibration discrepancies. Relative to Ed2, Ed4 cloud amounts agree better with those from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). CALIPSO comparisons indicate that Ed4 cloud amounts are more than or as accurate as other available cloud mask systems. The Ed4 mask correctly identifies cloudy or clear areas 90%-96% of the time during daytime over nonpolar areas depending on the CALIPSO-MODIS averaging criteria. At night, the range is 88%-95%. Accuracy decreases over land. The polar day and night accuracy ranges are 90%-91% and 80%-81%, respectively. The mean Ed4 cloud fractions slightly exceed the average for seven other imager cloud masks. Remaining biases and uncertainties are mainly attributed to errors in Ed4 predicted clear-sky radiances. The resulting cloud fractions should help CERES produce a more accurate radiation budget and serve as part of a cloud property climate data record. Satellites; cloud; Meteorology; MODIS; Clouds and the Earth's Radiant Energy System (CERES); cloud remote sensing; Clouds; Broadband communication; Calibration; Climate; Cloud computing; cloud mask; MODerate-resolution Imaging Spectroradiometer (MODIS).

2018

Duda, David P.; Bedka, Sarah T.; Minnis, Patrick; Spangenberg, Douglas; Khlopenkov, Konstantin; Chee, Thad; Smith Jr., William L.Duda, D. P., S. T. Bedka, P. Minnis, D. Spangenberg, K. Khlopenkov, T. Chee, W. L. Smith Jr., 2018: Northern Hemisphere Contrail Properties Derived from Terra and Aqua MODIS Data for 2006 and 2012. Atmospheric Chemistry and Physics Discussions, 1-30. doi: 10.5194/acp-2018-993. Abstract. Linear contrail coverage, optical property, and radiative forcing data over the Northern Hemisphere (NH) are derived from a year (2012) of Terra and Aqua Moderate-resolution Imaging Spectroradiometer (MODIS) imagery, and are compared with previously published 2006 results (Duda et al., 2013; Bedka et al., 2013; Spangenberg et al., 2013) using a consistent retrieval methodology. Differences in the observed Terra-minus-Aqua screened contrail coverage and patterns in the 2012 annual-mean air traffic estimated with respect to satellite overpass time suggest that most contrails detected by the contrail detection algorithm (CDA) form approximately 2h before overpass time. The 2012 screened NH contrail coverage (Mask B) shows a relative 3% increase (from 0.136% to 0.140%) compared to 2006 data for Terra and increased by almost 7% (0.134% to 0.143%) for Aqua. A new post-processing algorithm added to the contrail mask processing estimated that the total contrail cirrus coverage visible in the MODIS imagery may be three to four times larger than the linear contrail coverage detected by the CDA. This estimate is similar in magnitude to the spreading factor estimated by Minnis et al. (2013). Contrail property retrievals of the 2012 data indicate that both contrail optical depth and contrail effective diameter decreased approximately 10% between 2006 and 2012. The decreases may be attributed to better background cloudiness characterization, changes in the waypoint screening, or changes in contrail temperature. The total mean contrail radiative forcing (TCRF) for all 2012 Terra observations were −6.3, 14.3, and 8.0mWm−2 for the shortwave (SWCRF), longwave (LWCRF), and net forcings, respectively. These values are approximately 20% less than the corresponding 2006 Terra estimates. The decline in TCRF results from the decrease in normalized CRF, partially offset by the 3% increase in overall contrail coverage in 2012. The TCRFs for 2012 Aqua are similar, −6.4, 15.5, and 9.0mWm−2 for shortwave, longwave, and net radiative forcing. The strong correlation between the relative changes in both total SWCRF and LWCRF between 2006 and 2012 and the corresponding relative changes in screened contrail coverage over each air traffic region suggests that regional changes in TCRF from year to year are dominated by interannual changes in contrail coverage over each area.
Kato, Seiji; Rose, Fred G.; Rutan, David A.; Thorsen, Tyler J.; Loeb, Norman G.; Doelling, David R.; Huang, Xianglei; Smith, William L.; Su, Wenying; Ham, Seung HeeKato, S., F. G. Rose, D. A. Rutan, T. J. Thorsen, N. G. Loeb, D. R. Doelling, X. Huang, W. L. Smith, W. Su, S. H. Ham, 2018: Surface Irradiances of Edition 4.0 Clouds and the Earth’s Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) Data Product. J. Climate, 31(11), 4501–4527. doi: 10.1175/JCLI-D-17-0523.1. The algorithm to produce the Clouds and the Earth’s Energy System (CERES) Ed4.0 Energy Balanced and Filled (EBAF)-surface data product is explained. The algorithm forces computed top-of-atmosphere (TOA) irradiances to match with Ed4.0 EBAF-TOA irradiances by adjusting surface, cloud and atmospheric properties. Surface irradiances are subsequently adjusted using radiative kernels. The adjustment process is composed of two parts, bias correction and Lagrange multiplier. The bias in temperature and specific humidity between 200 hPa and 500 hPa used for the irradiance computation is corrected based on observations by Atmospheric Infrared Sounder (AIRS). Similarly, the bias in the cloud fraction is corrected based on observations by Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO), and CloudSat. Remaining errors in surface, cloud and atmospheric properties are corrected in the Lagrange multiplier process. Ed4.0 global annual mean (January 2005 thorough December 2014) surface net shortwave (SW) and longwave (LW) irradiances, respectively, increases by 1.3 Wm-2 and decreases by 0.2 Wm-2 compared to EBAF Ed2.8 counterparts (the previous version), resulting increasing in net SW+LW surface irradiance by 1.1 Wm-2. The uncertainty in surface irradiances over ocean, land and polar regions at various spatial scales are estimated. The uncertainties in all-sky global annual mean upward and downward shortwave irradiance are, respectively, 3 Wm-2 and 4 Wm-2, and the uncertainties in upward and downward longwave irradiance are respectively, 3 Wm-2 and 6 Wm-2. With an assumption of all errors being independent the uncertainty in the global annual mean surface LW+SW net irradiance is 8 Wm-2.
Loeb, Norman G.; Yang, Ping; Rose, Fred G.; Hong, Gang; Sun-Mack, Sunny; Minnis, Patrick; Kato, Seiji; Ham, Seung-Hee; Smith, William L.; Hioki, Souichiro; Tang, GuanglinLoeb, N. G., P. Yang, F. G. Rose, G. Hong, S. Sun-Mack, P. Minnis, S. Kato, S. Ham, W. L. Smith, S. Hioki, G. Tang, 2018: Impact of Ice Cloud Microphysics on Satellite Cloud Retrievals and Broadband Flux Radiative Transfer Model Calculations. J. Climate, 31(5), 1851–1864. doi: 10.1175/JCLI-D-17-0426.1. Ice cloud particles exhibit a range of shapes and sizes affecting a cloud’s single-scattering properties. Because they cannot be inferred from passive visible/infrared imager measurements, assumptions about the bulk single-scattering properties of ice clouds are fundamental to satellite cloud retrievals and broadband radiative flux calculations. To examine the sensitivity to ice particle model assumptions, three sets of models are used in satellite imager retrievals of ice cloud fraction, thermodynamic phase, optical depth, effective height and particle size, and in top-of-atmosphere and surface broadband radiative flux calculations. The three ice particle models include smooth hexagonal ice columns (SMOOTH), roughened hexagonal ice columns, and a two-habit model (THM) comprised of an ensemble of hexagonal columns and 20-element aggregates. While the choice of ice particle model has a negligible impact on daytime cloud fraction and thermodynamic phase, the global mean ice cloud optical depth retrieved from THM is smaller than SMOOTH by 2.3 (28%), and the regional root-mean-square-difference (RMSD) is 2.8 (32%). Effective radii derived from THM are 3.9 μm (16%) smaller than SMOOTH values and the RMSD is 5.2 μm (21%). In contrast, the regional RMSD in top-of-atmosphere (TOA) and surface flux between the THM and SMOOTH is only 1% in the SW and 0.3% in the LW when a consistent ice particle model is assumed in the cloud property retrievals and forward radiative transfer model calculations. Consequently, radiative fluxes derived using a consistent ice particle model assumption throughout provide a more robust reference for climate model evaluation compared to ice cloud property retrievals.
Sun-Mack, S.; Minnis, P.; Chen, Y.; Doelling, D. R.; Scarino, B. R.; Haney, C. O.; Smith, W. L.Sun-Mack, S., P. Minnis, Y. Chen, D. R. Doelling, B. R. Scarino, C. O. Haney, W. L. Smith, 2018: Calibration Changes to Terra MODIS Collection-5 Radiances for CERES Edition 4 Cloud Retrievals. IEEE Transactions on Geoscience and Remote Sensing, 1-17. doi: 10.1109/TGRS.2018.2829902. Previous research has revealed inconsistencies between the Collection 5 (C5) calibrations of certain channels common to the Terra and Aqua Moderate Resolution Imaging Spectroradiometers (MODISs). To achieve consistency between the Terra and Aqua MODIS radiances used in the Clouds and the Earth's Radiant Energy System (CERES) Edition 4 (Ed4) cloud property retrieval system, adjustments were developed and applied to the Terra C5 calibrations for channels 1-5, 7, 20, and 26. These calibration corrections, developed independently of those used for the later MODIS Collection 6 (C6), ranged from -3.0% for channel 5 to +4.3% for channel 26. For channel 20, the Terra C5 brightness temperatures were decreased nonlinearly by 0.55 K at 300-10 K or more at 220 K. The corrections were applied to the Terra C5 data for CERES Ed4 and resulted in Terra-Aqua radiance consistency that is as good as or better than that of the C6 data sets. The C5 adjustments led to more consistent Aqua and Terra cloud property retrievals than seen in the previous CERES edition. After Ed4 began processing, other calibration artifacts were found in some corrected channels and in some of the uncorrected thermal channels. Because no corrections were developed or applied for those artifacts, some anomalies or false trends could have been introduced into the Ed4 cloud property record. Thus, despite the much improved consistency achieved for the Terra and Aqua data sets in Ed4, the CERES Ed4 cloud property data sets should be used cautiously for cloud trend studies due to those remaining calibration artifacts. Earth; Satellites; cloud; Meteorology; climate; MODIS; Clouds and the Earth's Radiant Energy System (CERES); Moderate Resolution Imaging Spectroradiometer (MODIS); Market research; Clouds; Calibration
Tian, Jingjing; Dong, Xiquan; Xi, Baike; Minnis, Patrick; Smith, William L.; Sun-Mack, Sunny; Thieman, Mandana; Wang, JingyuTian, J., X. Dong, B. Xi, P. Minnis, W. L. Smith, S. Sun-Mack, M. Thieman, J. Wang, 2018: Comparisons of Ice Water Path in Deep Convective Systems Among Ground-Based, GOES, and CERES-MODIS Retrievals. Journal of Geophysical Research: Atmospheres, 123(3), 1708-1723. doi: 10.1002/2017JD027498. Retrievals of convective cloud microphysical properties based on passive satellite imagery are difficult. To help quantify their uncertainties, ice water paths (IWPs) retrieved from the NASA Clouds and the Earth's Radiant Energy System project using Geostationary Operational Environmental Satellite (GOES) and Terra/Aqua MODerate-resolution Imaging Spectroradiometer observations are compared with IWPs retrieved from Next-Generation Radar (NEXRAD) observations over a large domain (32°N to 40°N and 105°W to 91°W) during the 2011 Midlatitude Continental Convective Clouds Experiment field campaign. Based on comparisons of pixel-level (4 km × 4 km) daytime IWP retrievals from NEXRAD and GOES, it is found that NEXRAD- and GOES-retrieved mean IWPs are 2.03 and 1.83 kg m−2, respectively, for ice-phase cloud in thick anvil area. Their mean difference of 0.20 kg m−2 (with 95% confidence interval: 0.14–0.26 kg m−2) is within the uncertainty of NEXRAD retrievals. However, the low correlation between pixel-to-pixel comparisons indicates a large variation in GOES-retrieved IWP. For mixed-phase clouds in thick anvil areas, in addition to IWPs, total water paths (TWPs, sum of ice and liquid water path) are estimated with aid of aircraft measurements for NEXRAD retrievals and corrected using a TWP parameterization for GOES retrievals. The mean values of estimated TWPs from NEXRAD (corrected using aircraft in situ measurements) and GOES are similar. GOES and Clouds and the Earth's Radiant Energy System-MODerate-resolution Imaging Spectroradiometer-retrieved IWPs/TWPs generally do not exceed 5 kg m−2. Large differences and low correlations exist between satellite and NEXRAD retrievals in stratiform rain areas. Possible reasons for the differences between retrievals are discussed. 0320 Cloud physics and chemistry; satellite remote sensing; 3314 Convective processes; ice particles; deep convection; 3360 Remote sensing; 0319 Cloud optics; cloud microphysics retrieval
Wall, Casey J.; Hartmann, Dennis L.; Thieman, Mandana M.; Smith, William L.; Minnis, PatrickWall, C. J., D. L. Hartmann, M. M. Thieman, W. L. Smith, P. Minnis, 2018: The Life Cycle of Anvil Clouds and the Top-of-Atmosphere Radiation Balance over the Tropical West Pacific. J. Climate, 31(24), 10059-10080. doi: 10.1175/JCLI-D-18-0154.1. Observations from a geostationary satellite are used to study the life cycle of mesoscale convective systems (MCS), their associated anvil clouds, and their effects on the radiation balance over the warm pool of the tropical western Pacific Ocean. In their developing stages, MCS primarily consist of clouds that are optically thick and have a negative net cloud radiative effect (CRE). As MCS age, ice crystals in the anvil become larger, the cloud top lowers somewhat, and cloud radiative effects decrease in magnitude. Shading from anvils causes cool anomalies in the underlying sea surface temperature (SST) of up to −0.6°C. MCS often occur in clusters that are embedded within large westward-propagating disturbances, and therefore shading from anvils can cool SSTs over regions spanning hundreds of kilometers. Triggering of convection is more likely to follow a warm SST anomaly than a cold SST anomaly on a time scale of several days. This information is used to evaluate hypotheses for why, over the warm pool, the average shortwave and longwave CRE are individually large but nearly cancel. The results are consistent with the hypothesis that the cancellation in CRE is caused by feedbacks among cloud albedo, large-scale circulation, and SST.

2017

Smith, William L.; Hansen, Christy; Bucholtz, Anthony; Anderson, Bruce E.; Beckley, Matthew; Corbett, Joseph G.; Cullather, Richard I.; Hines, Keith M.; Hofton, Michelle; Kato, Seiji; Lubin, Dan; Moore, Richard H.; Segal Rosenhaimer, Michal; Redemann, Jens; Schmidt, Sebastian; Scott, Ryan; Song, Shi; Barrick, John D.; Blair, J. Bryan; Bromwich, David H.; Brooks, Colleen; Chen, Gao; Cornejo, Helen; Corr, Chelsea A.; Ham, Seung-Hee; Kittelman, A. Scott; Knappmiller, Scott; LeBlanc, Samuel; Loeb, Norman G.; Miller, Colin; Nguyen, Louis; Palikonda, Rabindra; Rabine, David; Reid, Elizabeth A.; Richter-Menge, Jacqueline A.; Pilewskie, Peter; Shinozuka, Yohei; Spangenberg, Douglas; Stackhouse, Paul; Taylor, Patrick; Thornhill, K. Lee; van Gilst, David; Winstead, EdwardSmith, W. L., C. Hansen, A. Bucholtz, B. E. Anderson, M. Beckley, J. G. Corbett, R. I. Cullather, K. M. Hines, M. Hofton, S. Kato, D. Lubin, R. H. Moore, M. Segal Rosenhaimer, J. Redemann, S. Schmidt, R. Scott, S. Song, J. D. Barrick, J. B. Blair, D. H. Bromwich, C. Brooks, G. Chen, H. Cornejo, C. A. Corr, S. Ham, A. S. Kittelman, S. Knappmiller, S. LeBlanc, N. G. Loeb, C. Miller, L. Nguyen, R. Palikonda, D. Rabine, E. A. Reid, J. A. Richter-Menge, P. Pilewskie, Y. Shinozuka, D. Spangenberg, P. Stackhouse, P. Taylor, K. L. Thornhill, D. van Gilst, E. Winstead, 2017: Arctic Radiation-IceBridge Sea and Ice Experiment: The Arctic Radiant Energy System during the Critical Seasonal Ice Transition. Bull. Amer. Meteor. Soc., 98(7), 1399-1426. doi: 10.1175/BAMS-D-14-00277.1. AbstractThe National Aeronautics and Space Administration (NASA)?s Arctic Radiation-IceBridge Sea and Ice Experiment (ARISE) acquired unique aircraft data on atmospheric radiation and sea ice properties during the critical late summer to autumn sea ice minimum and commencement of refreezing. The C-130 aircraft flew 15 missions over the Beaufort Sea between 4 and 24 September 2014. ARISE deployed a shortwave and longwave broadband radiometer (BBR) system from the Naval Research Laboratory; a Solar Spectral Flux Radiometer (SSFR) from the University of Colorado Boulder; the Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) from the NASA Ames Research Center; cloud microprobes from the NASA Langley Research Center; and the Land, Vegetation and Ice Sensor (LVIS) laser altimeter system from the NASA Goddard Space Flight Center. These instruments sampled the radiant energy exchange between clouds and a variety of sea ice scenarios, including prior to and after refreezing began. The most critical and unique aspect of ARISE mission planning was to coordinate the flight tracks with NASA Cloud and the Earth?s Radiant Energy System (CERES) satellite sensor observations in such a way that satellite sensor angular dependence models and derived top-of-atmosphere fluxes could be validated against the aircraft data over large gridbox domains of order 100?200 km. This was accomplished over open ocean, over the marginal ice zone (MIZ), and over a region of heavy sea ice concentration, in cloudy and clear skies. ARISE data will be valuable to the community for providing better interpretation of satellite energy budget measurements in the Arctic and for process studies involving ice?cloud?atmosphere energy exchange during the sea ice transition period.

2016

Minnis, Patrick; Hong, Gang; Sun-Mack, Szedung; Smith, William L.; Chen, Yan; Miller, Steven D.Minnis, P., G. Hong, S. Sun-Mack, W. L. Smith, Y. Chen, S. D. Miller, 2016: Estimating Nocturnal Opaque Ice Cloud Optical Depth from MODIS Multispectral Infrared Radiances Using a Neural Network Method. Journal of Geophysical Research: Atmospheres, 121(9), 4907–4932. doi: 10.1002/2015JD024456. Retrieval of ice cloud properties using IR measurements has a distinct advantage over the visible and near-IR techniques by providing consistent monitoring regardless of solar illumination conditions. Historically, the IR bands at 3.7, 6.7, 11.0, and 12.0 µm have been used to infer ice cloud parameters by various methods, but the reliable retrieval of ice cloud optical depth τ is limited to non-opaque cirrus with τ  0320 Cloud physics and chemistry; MODIS; CloudSat; optical depth; ice cloud; 3360 Remote sensing; 0319 Cloud optics; neural network; night

2013

Wielicki, Bruce A.; Young, D. F.; Mlynczak, M. G.; Thome, K. J.; Leroy, S.; Corliss, J.; Anderson, J. G.; Ao, C.O.; Bantges, R.; Best, F.; Bowman, K.; Brindley, H.; Butler, J. J.; Collins, W.; Dykema, J. A.; Doelling, D. R.; Feldman, D. R.; Fox, N.; Huang, X.; Holz, R.; Huang, Y.; Jin, Z.; Jennings, D.; Johnson, D. G.; Jucks, K.; Kato, S.; Kirk-Davidoff, D. B.; Knuteson, R.; Kopp, G.; Kratz, D. P.; Liu, X.; Lukashin, C.; Mannucci, A. J.; Phojanamongkolkij, N.; Pilewskie, P.; Ramaswamy, V.; Revercomb, H.; Rice, J.; Roberts, Y.; Roithmayr, C. M.; Rose, F.; Sandford, S.; Shirley, E. L.; Smith, W.L.; Soden, B.; Speth, P. W.; Sun, W.; Taylor, P.C.; Tobin, D.; Xiong, X.Wielicki, B. A., D. F. Young, M. G. Mlynczak, K. J. Thome, S. Leroy, J. Corliss, J. G. Anderson, C. Ao, R. Bantges, F. Best, K. Bowman, H. Brindley, J. J. Butler, W. Collins, J. A. Dykema, D. R. Doelling, D. R. Feldman, N. Fox, X. Huang, R. Holz, Y. Huang, Z. Jin, D. Jennings, D. G. Johnson, K. Jucks, S. Kato, D. B. Kirk-Davidoff, R. Knuteson, G. Kopp, D. P. Kratz, X. Liu, C. Lukashin, A. J. Mannucci, N. Phojanamongkolkij, P. Pilewskie, V. Ramaswamy, H. Revercomb, J. Rice, Y. Roberts, C. M. Roithmayr, F. Rose, S. Sandford, E. L. Shirley, W. Smith, B. Soden, P. W. Speth, W. Sun, P. Taylor, D. Tobin, X. Xiong, 2013: Achieving Climate Change Absolute Accuracy in Orbit. Bull. Amer. Meteor. Soc., 130308154356007. doi: 10.1175/BAMS-D-12-00149.1.

2012

Smith, William L.; Minnis, Patrick; Fleeger, Cecilia; Spangenberg, Douglas; Palikonda, Rabindra; Nguyen, LouisSmith, W. L., P. Minnis, C. Fleeger, D. Spangenberg, R. Palikonda, L. Nguyen, 2012: Determining the Flight Icing Threat to Aircraft with Single-Layer Cloud Parameters Derived from Operational Satellite Data. J. Appl. Meteor. Climatol., 51(10), 1794-1810. doi: 10.1175/JAMC-D-12-057.1. AbstractAn algorithm is developed to determine the flight icing threat to aircraft utilizing quantitative information on clouds derived from meteorological satellite data as input. Algorithm inputs include the satellite-derived cloud-top temperature, thermodynamic phase, water path, and effective droplet size. The icing-top and -base altitude boundaries are estimated from the satellite-derived cloud-top and -base altitudes using the freezing level obtained from numerical weather analyses or a lapse-rate approach. The product is available at the nominal resolution of the satellite pixel. Aircraft pilot reports (PIREPs) over the United States and southern Canada provide direct observations of icing and are used extensively in the algorithm development and validation on the basis of correlations with Geostationary Operational Environmental Satellite imager data. Verification studies using PIREPs, Tropospheric Airborne Meteorological Data Reporting, and NASA Icing Remote Sensing System data indicate that the satellite algorithm performs reasonably well, particularly during the daytime. The algorithm is currently being run routinely using data taken from a variety of satellites across the globe and is providing useful information on icing conditions at high spatial and temporal resolutions that are unavailable from any other source. Cloud retrieval; satellite observations; Algorithms; Icing; Nowcasting

2011

Minnis, P.; Sun-Mack, Szedung; Chen, Yan; Khaiyer, M.M.; Yi, Yuhong; Ayers, J.K.; Brown, R.R.; Dong, Xiquan; Gibson, S.C.; Heck, P.W.; Lin, Bing; Nordeen, M.L.; Nguyen, L.; Palikonda, R.; Smith, W.L.; Spangenberg, D.A.; Trepte, Q.Z.; Xi, BaikeMinnis, P., S. Sun-Mack, Y. Chen, M. Khaiyer, Y. Yi, J. Ayers, R. Brown, X. Dong, S. Gibson, P. Heck, B. Lin, M. Nordeen, L. Nguyen, R. Palikonda, W. Smith, D. Spangenberg, Q. Trepte, B. Xi, 2011: CERES Edition-2 Cloud Property Retrievals Using TRMM VIRS and Terra and Aqua MODIS Data #x2014;Part II: Examples of Average Results and Comparisons With Other Data. IEEE Transactions on Geoscience and Remote Sensing, 49(11), 4401-4430. doi: 10.1109/TGRS.2011.2144602. Cloud properties were retrieved by applying the Clouds and Earth's Radiant Energy System (CERES) project Edition-2 algorithms to 3.5 years of Tropical Rainfall Measuring Mission Visible and Infrared Scanner data and 5.5 and 8 years of MODerate Resolution Imaging Spectroradiometer (MODIS) data from Aqua and Terra, respectively. The cloud products are consistent quantitatively from all three imagers; the greatest discrepancies occur over ice-covered surfaces. The retrieved cloud cover ( 59%) is divided equally between liquid and ice clouds. Global mean cloud effective heights, optical depth, effective particle sizes, and water paths are 2.5 km, 9.9, 12.9 μm , and 80 g·m-2, respectively, for liquid clouds and 8.3 km, 12.7, 52.2 μm, and 230 g·m-2 for ice clouds. Cloud droplet effective radius is greater over ocean than land and has a pronounced seasonal cycle over southern oceans. Comparisons with independent measurements from surface sites, the Ice Cloud and Land Elevation Satellite, and the Aqua Advanced Microwave Scanning Radiometer-Earth Observing System are used to evaluate the results. The mean CERES and MODIS Atmosphere Science Team cloud properties have many similarities but exhibit large discrepancies in certain parameters due to differences in the algorithms and the number of unretrieved cloud pixels. Problem areas in the CERES algorithms are identified and discussed. clouds; infrared imaging; Remote sensing; Satellites; atmospheric techniques; cloud; radiometry; Atmospheric measurements; Cloud optical depth; climate; ice clouds; data acquisition; Moderate Resolution Imaging Spectroradiometer; MODIS; Cloud cover; Clouds and the Earth's Radiant Energy System (CERES); Moderate Resolution Imaging Spectroradiometer (MODIS); effective particle size; cloud remote sensing; ice; Integrated optics; water path; Aqua MODIS Data; ice-covered surface; Pixel; Terra MODIS Data; TRMM VIRS; Visible and Infrared Scanner (VIRS); Aqua Advanced Microwave Scanning Radiometer-Earth Observing System; atmospheric precipitation; CERES Edition-2; CERES project; cloud droplet effective radius; cloud effective height; cloud product; cloud property retrieval; Clouds and Earth's Radiant Energy System; Ice Cloud and Land Elevation Satellite; liquid clouds; MODIS Atmosphere Science Team; southern oceans; time 3.5 yr; time 5.5 yr; time 8 yr; Tropical Rainfall Measuring Mission Visib
Minnis, P.; Sun-Mack, Szedung; Young, D.F.; Heck, P.W.; Garber, D.P.; Chen, Yan; Spangenberg, D.A.; Arduini, R.F.; Trepte, Q.Z.; Smith, W.L.; Ayers, J.K.; Gibson, S.C.; Miller, W.F.; Hong, G.; Chakrapani, V.; Takano, Y.; Liou, Kuo-Nan; Xie, Yu; Yang, PingMinnis, P., S. Sun-Mack, D. Young, P. Heck, D. Garber, Y. Chen, D. Spangenberg, R. Arduini, Q. Trepte, W. Smith, J. Ayers, S. Gibson, W. Miller, G. Hong, V. Chakrapani, Y. Takano, K. Liou, Y. Xie, P. Yang, 2011: CERES Edition-2 Cloud Property Retrievals Using TRMM VIRS and Terra and Aqua MODIS Data #x2014;Part I: Algorithms. IEEE Transactions on Geoscience and Remote Sensing, 49(11), 4374-4400. doi: 10.1109/TGRS.2011.2144601. The National Aeronautics and Space Administration's Clouds and the Earth's Radiant Energy System (CERES) Project was designed to improve our understanding of the relationship between clouds and solar and longwave radiation. This is achieved using satellite broad-band instruments to map the top-of-atmosphere radiation fields with coincident data from satellite narrow-band imagers employed to retrieve the properties of clouds associated with those fields. This paper documents the CERES Edition-2 cloud property retrieval system used to analyze data from the Tropical Rainfall Measuring Mission Visible and Infrared Scanner and by the MODerate-resolution Imaging Spectrometer instruments on board the Terra and Aqua satellites covering the period 1998 through 2007. Two daytime retrieval methods are explained: the Visible Infrared Shortwave-infrared Split-window Technique for snow-free surfaces and the Shortwave-infrared Infrared Near-infrared Technique for snow or ice-covered surfaces. The Shortwave-infrared Infrared Split-window Technique is used for all surfaces at night. These methods, along with the ancillary data and empirical parameterizations of cloud thickness, are used to derive cloud boundaries, phase, optical depth, effective particle size, and condensed/frozen water path at both pixel and CERES footprint levels. Additional information is presented, detailing the potential effects of satellite calibration differences, highlighting methods to compensate for spectral differences and correct for atmospheric absorption and emissivity, and discussing known errors in the code. Because a consistent set of algorithms, auxiliary input, and calibrations across platforms are used, instrument and algorithm-induced changes in the data record are minimized. This facilitates the use of the CERES data products for studying climate-scale trends. calibration; clouds; Land surface; Satellites; atmospheric radiation; atmospheric techniques; cloud; Data analysis; rain; Tropical Rainfall Measuring Mission; Solar radiation; climate; longwave radiation; snow; MODIS; Clouds and the Earth's Radiant Energy System (CERES); Terra satellite; Sea surface; Ocean temperature; National Aeronautics and Space Administration; cloud remote sensing; AD 1998 to 2007; algorithm-induced change analysis; Aqua MODIS Data; Aqua satellite; atmospheric absorption; CERES data analysis; CERES Edition-2 cloud property retrieval system; Clouds Earth's Radiant Energy System; condensed water path; frozen water path; ice-covered surface; MODerate-resolution Imaging Spectrometer (MODIS); Moderate-Resolution Imaging Spectrometer instrument; particle size; Pixel; satellite broad-band instrument; satellite calibration effect; satellite narrow-band image; shortwave-infrared infrared near-infrared technique; snow surface; Terra MODIS Data; top-of-atmosphere radiation f

2010

Chang, Fu-Lung; Minnis, Patrick; Ayers, J. Kirk; McGill, Matthew J.; Palikonda, Rabindra; Spangenberg, Douglas A.; Smith, William L.; Yost, Christopher R.Chang, F., P. Minnis, J. K. Ayers, M. J. McGill, R. Palikonda, D. A. Spangenberg, W. L. Smith, C. R. Yost, 2010: Evaluation of satellite-based upper troposphere cloud top height retrievals in multilayer cloud conditions during TC4. Journal of Geophysical Research: Atmospheres, 115(D10), D00J05. doi: 10.1029/2009JD013305. Upper troposphere cloud top heights (CTHs), restricted to cloud top pressures (CTPs) < 500 hPa, inferred using four satellite retrieval methods applied to Twelfth Geostationary Operational Environmental Satellite (GOES-12) data are evaluated using measurements during the July–August 2007 Tropical Composition, Cloud and Climate Coupling Experiment (TC4). The four methods are the single-layer CO2-absorption technique (SCO2AT), a modified CO2-absorption technique (MCO2AT) developed for improving both single-layered and multilayered cloud retrievals, a standard version of the Visible Infrared Solar-infrared Split-window Technique (old VISST), and a new version of VISST (new VISST) recently developed to improve cloud property retrievals. They are evaluated by comparing with ER-2 aircraft-based Cloud Physics Lidar (CPL) data taken during 9 days having extensive upper troposphere cirrus, anvil, and convective clouds. Compared to the 89% coverage by upper tropospheric clouds detected by the CPL, the SCO2AT, MCO2AT, old VISST, and new VISST retrieved CTPs < 500 hPa in 76, 76, 69, and 74% of the matched pixels, respectively. Most of the differences are due to subvisible and optically thin cirrus clouds occurring near the tropopause that were detected only by the CPL. The mean upper tropospheric CTHs for the 9 days are 14.2 (±2.1) km from the CPL and 10.7 (±2.1), 12.1 (±1.6), 9.7 (±2.9), and 11.4 (±2.8) km from the SCO2AT, MCO2AT, old VISST, and new VISST, respectively. Compared to the CPL, the MCO2AT CTHs had the smallest mean biases for semitransparent high clouds in both single-layered and multilayered situations whereas the new VISST CTHs had the smallest mean biases when upper clouds were opaque and optically thick. The biases for all techniques increased with increasing numbers of cloud layers. The transparency of the upper layer clouds tends to increase with the numbers of cloud layers. 3311 Clouds and aerosols; 3359 Radiative processes; 3394 Instruments and techniques; cloud top height; multilayer cloud; satellite cloud retrieval

2007

Wang, D.; Minnis, P.; Charlock, T. P.; Zhou, D. K.; Rose, F. G.; Smith, W. L.; Jr, W. L. Smith; Nguyen, L.Wang, D., P. Minnis, T. P. Charlock, D. K. Zhou, F. G. Rose, W. L. Smith, W. L. S. Jr, L. Nguyen, 2007: Real-time mesoscale forecast support during the CLAMS field campaign. Advances in Atmospheric Sciences, 24(4), 599-605. doi: 10.1007/s00376-007-0599-3. This paper reports the use of a specialized, mesoscale, numerical weather prediction (NWP) system and a satellite imaging and prediction system that were set up to support the CLAMS (Chesapeake Lighthouse and Aircraft Measurements for Satellites) field campaign during the summer of 2001. The primary objective of CLAMS was to validate satellite-based retrievals of aerosol properties and vertical profiles of the radiative flux, temperature and water vapor. Six research aircraft were deployed to make detailed coincident measurements of the atmosphere and ocean surface with the research satellites that orbited overhead. The mesoscale weather modeling system runs in real-time to provide high spatial and temporal resolution for forecasts that are delivered via the World Wide Web along with a variety of satellite imagery and satellite location predictions. This system is a multi-purpose modeling system capable of both data analysis/assimilation and multi-scale NWP ranging from cloud-scale to larger than regional scale. This is a three-dimensional, nonhydrostatic compressible model in a terrain-following coordinate. The model employs advanced numerical techniques and contains detailed interactive physical processes. The utility of the forecasting system is illustrated throughout the discussion on the impact of the surface-wind forecast on BRDF (Bidirectional Reflectance Distribution Function) and the description of the cloud/moisture forecast versus the aircraft measurement. Meteorology/Climatology; CLAMS field campaign; forecast support; Geophysics/Geodesy; mesoscale numerical weather prediction

2006

Rutledge, Charles K.; Schuster, Gregory L.; Charlock, Thomas P.; Denn, Frederick M.; Smith, William L.; Fabbri, Bryan E.; Madigan, James J.; Knapp, Robert J.Rutledge, C. K., G. L. Schuster, T. P. Charlock, F. M. Denn, W. L. Smith, B. E. Fabbri, J. J. Madigan, R. J. Knapp, 2006: Offshore Radiation Observations for Climate Research at the CERES Ocean Validation Experiment: A New “Laboratory” for Retrieval Algorithm Testing. Bull. Amer. Meteor. Soc., 87(9), 1211-1222. doi: 10.1175/BAMS-87-9-1211. Abstract When radiometers on satellites point toward Earth with the goal of sensing an important variable quantitatively, rather than just creating a pleasing image, the task at hand is often not simple. The electromagnetic energy detected by the radiometers is a puzzle of various signals; it must be solved to quantify the specific physical variable. This task, called the retrieval or remote-sensing process, is important to most satellite-based observation programs. It would be ideal to test the algorithms for retrieval processes in a sealed laboratory, where all the relevant parameters could be easily measured. The size and complexity of the Earth make this impractical. NASA's Clouds and the Earth's Radiant Energy System (CERES) project has done the next-best thing by developing a long-term radiation observation site over the ocean. The relatively low and homogeneous surface albedo of the ocean make this type of site a simpler environment for observing and validating radiation parameters from satellite-based instruments. To characterize components of the planet's energy budget, CERES uses a variety of retrievals associated with several satellite-based instruments onboard NASA's Earth Observing System (EOS). A new surface observation project called the CERES Ocean Validation Experiment (COVE), operating on a rigid ocean platform, is supplying data to validate some of these instruments and retrieval products. This article describes the ocean platform and the types of observations being performed there, and highlights of some scientific problems being addressed.

2005

Redemann, J.; Schmid, B.; Eilers, J. A.; Kahn, R.; Levy, R. C.; Russell, P. B.; Livingston, J. M.; Hobbs, P. V.; Smith, W. L.; Holben, B. N.Redemann, J., B. Schmid, J. A. Eilers, R. Kahn, R. C. Levy, P. B. Russell, J. M. Livingston, P. V. Hobbs, W. L. Smith, B. N. Holben, 2005: Suborbital Measurements of Spectral Aerosol Optical Depth and Its Variability at Subsatellite Grid Scales in Support of CLAMS 2001. J. Atmos. Sci., 62(4), 993-1007. doi: 10.1175/JAS3387.1. Abstract As part of the Chesapeake Lighthouse and Aircraft Measurements for Satellites (CLAMS) experiment, 10 July–2 August 2001, off the central East Coast of the United States, the 14-channel NASA Ames Airborne Tracking Sunphotometer (AATS-14) was operated aboard the University of Washington’s Convair 580 (CV-580) research aircraft during 10 flights (∼45 flight hours). One of the main research goals in CLAMS was the validation of satellite-based retrievals of aerosol properties. The goal of this study in particular was to perform true over-ocean validations (rather than over-ocean validation with ground-based, coastal sites) at finer spatial scales and extending to longer wavelengths than those considered in previous studies. Comparisons of aerosol optical depth (AOD) between the Aerosol Robotic Network (AERONET) Cimel instrument at the Chesapeake Lighthouse and airborne measurements by AATS-14 in its vicinity showed good agreement with the largest r-square correlation coefficients at wavelengths of 0.38 and 0.5 μm (>0.99). Coordinated low-level flight tracks of the CV-580 during Terra overpass times permitted validation of over-ocean Moderate Resolution Imaging Spectroradiometer (MODIS) level 2 (MOD04_L2) multiwavelength AOD data (10 km × 10 km, nadir) in 16 cases on three separate days. While the correlation between AATS-14- and MODIS-derived AOD was weak with an r square of 0.55, almost 75% of all MODIS AOD measurements fell within the prelaunch estimated uncertainty range Δτ = ±0.03 ± 0.05τ. This weak correlation may be due to the small AODs (generally less than 0.1 at 0.5 μm) encountered in these comparison cases. An analogous coordination exercise resulted in seven coincident over-ocean matchups between AATS-14 and Multiangle Imaging Spectroradiometer (MISR) measurements. The comparison between AATS-14 and the MISR standard algorithm regional mean AODs showed a stronger correlation with an r square of 0.94. However, MISR AODs were systematically larger than the corresponding AATS values, with an rms difference of ∼0.06. AATS data collected during nine extended low-level CV-580 flight tracks were used to assess the spatial variability in AOD at horizontal scales up to 100 km. At UV and midvisible wavelengths, the largest absolute gradients in AOD were 0.1–0.2 per 50-km horizontal distance. In the near-IR, analogous gradients rarely reached 0.05. On any given day, the relative gradients in AOD were remarkably similar for all wavelengths, with maximum values of 70% (50 km)−1 and more typical values of 25% (50 km)−1. The implications of these unique measurements of AOD spatial variability for common validation practices of satellite data products and for comparisons to large-scale aerosol models are discussed.
Smith, W. L.; Charlock, T. P.; Kahn, R.; Martins, J. V.; Remer, L. A.; Hobbs, P. V.; Redemann, J.; Rutledge, C. K.Smith, W. L., T. P. Charlock, R. Kahn, J. V. Martins, L. A. Remer, P. V. Hobbs, J. Redemann, C. K. Rutledge, 2005: EOS Terra Aerosol and Radiative Flux Validation: An Overview of the Chesapeake Lighthouse and Aircraft Measurements for Satellites (CLAMS) Experiment. J. Atmos. Sci., 62(4), 903-918. doi: 10.1175/JAS3398.1. Abstract NASA developed an Earth Observing System (EOS) to study global change and reduce uncertainties associated with aerosols and other key parameters controlling climate. The first EOS satellite, Terra, was launched in December 1999. The Chesapeake Lighthouse and Aircraft Measurements for Satellites (CLAMS) field campaign was conducted from 10 July to 2 August 2001 to validate several Terra data products, including aerosol properties and radiative flux profiles derived from three complementary Terra instruments: the Clouds and the Earth’s Radiant Energy System (CERES), the Multiangle Imaging Spectroradiometer (MISR), and the Moderate Resolution Imaging Spectroradiometer (MODIS). CERES, MISR, and MODIS are being used to investigate the critical role aerosols play in modulating the radiative heat budget of the earth–atmosphere system. CLAMS’ primary objectives are to improve understanding of atmospheric aerosols, to validate and improve the satellite data products, and to test new instruments and measurement concepts. A variety of in situ sampling devices and passive remote sensing instruments were flown on six aircraft to characterize the state of the atmosphere, the composition of atmospheric aerosols, and the associated surface and atmospheric radiation parameters over the U.S. eastern seaboard. Aerosol particulate matter was measured at two ground stations established at Wallops Island, Virginia, and the Chesapeake Lighthouse, the site of an ongoing CERES Ocean Validation Experiment (COVE) where well-calibrated radiative fluxes and Aerosol Robotic Network (AERONET) aerosol properties have been measured since 1999. Nine coordinated aircraft missions and numerous additional sorties were flown under a variety of atmospheric conditions and aerosol loadings. On one “golden day” (17 July 2001), under moderately polluted conditions with midvisible optical depths near 0.5, all six aircraft flew coordinated patterns vertically stacked between 100 and 65 000 ft over the COVE site as Terra flew overhead. This overview presents a description of CLAMS objectives, measurements, and sampling strategies. Key results, reported in greater detail in the collection of papers found in this special issue, are also summarized.

2004

Jin, Zhonghai; Charlock, Thomas P.; Smith, William L.; Rutledge, KenJin, Z., T. P. Charlock, W. L. Smith, K. Rutledge, 2004: A parameterization of ocean surface albedo. Geophysical Research Letters, 31(22). doi: https://doi.org/10.1029/2004GL021180. Measurements at a sea platform show that the ocean surface albedo is highly variable and is sensitive to four physical parameters: solar zenith angle, wind speed, transmission by atmospheric cloud/aerosol, and ocean chlorophyll concentration. Using a validated coupled ocean-atmosphere radiative transfer model, an ocean albedo look up table is created in terms of these four important parameters. A code to read the table is also provided; it gives spectral albedos for a range of oceanic and atmospheric conditions specified by the user. The result is a fast and accurate parameterization of ocean surface albedo for radiative transfer and climate modeling.

2002

Dong, Xiquan; Mace, Gerald G.; Minnis, Patrick; Smith, William L.; Poellot, Michael; Marchand, Roger T.; Rapp, Anita D.Dong, X., G. G. Mace, P. Minnis, W. L. Smith, M. Poellot, R. T. Marchand, A. D. Rapp, 2002: Comparison of Stratus Cloud Properties Deduced from Surface, GOES, and Aircraft Data during the March 2000 ARM Cloud IOP. J. Atmos. Sci., 59(23), 3265-3284. doi: 10.1175/1520-0469(2002)059<3265:COSCPD>2.0.CO;2. Abstract Low-level stratus cloud microphysical properties derived from surface and Geostationary Operational Environmental Satellite (GOES) data during the March 2000 cloud intensive observational period (IOP) at the Atmospheric Radiation Measurement (ARM) program Southern Great Plains (SGP) site are compared with aircraft in situ measurements. For the surface retrievals, the cloud droplet effective radius and optical depth are retrieved from a δ2-stream radiative transfer model with the input of ground-based measurements, and the cloud liquid water path (LWP) is retrieved from ground-based microwave-radiometer-measured brightness temperature. The satellite results, retrieved from GOES visible, solar-infrared, and infrared radiances, are averaged in a 0.5° × 0.5° box centered on the ARM SGP site. The forward scattering spectrometer probe (FSSP) on the University of North Dakota Citation aircraft provided in situ measurements of the cloud microphysical properties. During the IOP, four low-level stratus cases were intensively observed by the ground- and satellite-based remote sensors and aircraft in situ instruments resulting in a total of 10 h of simultaneous data from the three platforms. In spite of the large differences in temporal and spatial resolution between surface, GOES, and aircraft, the surface retrievals have excellent agreement with the aircraft data overall for the entire 10-h period, and the GOES results agree reasonably well with the surface and aircraft data and have similar trends and magnitudes except for the GOES-derived effective radii, which are typically larger than the surface- and aircraft-derived values. The means and standard deviations of the differences between the surface and aircraft effective radius, LWP, and optical depth are −4% ± 20.1%, −1% ± 31.2%, and 8% ± 29.3%, respectively; while their correlation coefficients are 0.78, 0.92, and 0.89, respectively, during the 10-h period. The differences and correlations between the GOES-8 and aircraft results are of a similar magnitude, except for the droplet sizes. The averaged GOES-derived effective radius is 23% or 1.8 μm greater than the corresponding aircraft values, resulting in a much smaller correlation coefficient of 0.18. Additional surface–satellite datasets were analyzed for time periods when the aircraft was unavailable. When these additional results are combined with the retrievals from the four in situ cases, the means and standard deviations of the differences between the satellite-derived cloud droplet effective radius, LWP, and optical depth and their surface-based counterparts are 16% ± 31.2%, 4% ± 31.6%, and −6% ± 39.9%, respectively. The corresponding correlation coefficients are 0.24, 0.88, and 0.73. The frequency distributions of the two datasets are very similar indicating that the satellite retrieval method should be able to produce reliable statistics of boundary layer cloud properties for use in climate and cloud process models.

1997

Minnis, P.; Mayor, S.; Smith, W.L.; Young, D.F.Minnis, P., S. Mayor, W. Smith, D. Young, 1997: Asymmetry in the diurnal variation of surface albedo. IEEE Transactions on Geoscience and Remote Sensing, 35(4), 879-890. doi: 10.1109/36.602530. Remote sensing of surface properties and estimation of clear-sky and surface albedo generally assume that the albedo depends only on the solar zenith angle. The effects of dew, frost, and precipitation as well as evaporation and wind can lead to some systematic diurnal variability resulting in an asymmetric diurnal cycle of albedo. This paper examines the symmetry of both surface-observed and top-of-the-atmosphere (TOA) albedos derived from satellite data. Broadband surface albedos were measured at the Department of Energy Atmospheric Radiation Measurement (ARM) Program Southern Great Plains Central Facility near Lamont, Oklahoma and several extended facilities. GOES satellite radiance data are converted to broadband albedo using bidirectional reflectance functions and an empirical narrowband-to-broadband relationship. The surface and top-of-atmosphere albedos vary in a consistent fashion during both the morning and afternoon. The initial results indicate that surface moisture, probably in the form of dew, has a significant effect and can change the albedo by 10% at a given solar zenith angle between the morning and afternoon. Wind speed is well correlated with the diurnal albedo asymmetry. Light winds and small dew point depressions are associated with the greatest morning/afternoon albedo differences. Aerosols tend to moderate those differences. Changes in the surface properties from dew may alter the bidirectional reflectance characteristics of the scene, affecting the interpretation of remote sensing data. Errors in the diurnally averaged albedos derived from Sun-synchronous satellite measurements that arise from albedo asymmetry are generally less than 3%. Further examination of surface albedo asymmetry is needed to assess its influence on satellite measurements and the surface energy budget over a range of land surface types atmosphere; geophysical techniques; Land surface; Remote sensing; Satellites; terrain; aerosols; Energy measurement; Moisture; 350 to 850 nm; afternoon; albedo; asymmetric diurnal cycle; asymmetry; Atmospheric measurements; atmospheric optics; Bidirectional control; bidirectional reflectance functions; diurnal variation; Lamont; land surface properties; land surface types; Layout; Light scattering; morning; Oklahoma; optics; Southern Great Plains; surface albedo; surface moisture; United States; USA; Wind speed