cancel
 
 
CERES Logo
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CERES FAQ


General Information

+
What is CERES?

    What is CERES? : ANSWER
The Clouds and the Earth s Radiant Energy System (CERES) experiment is one of the highest priority scientific satellite instruments developed for EOS. CERES products include both solar-reflected and Earth-emitted radiation from the top of the atmosphere to the Earth's surface. Cloud properties are determined using simultaneous measurements by other EOS instruments such as the Moderate Resolution Imaging Spectroradiometer (MODIS). Analyses of the CERES data, which build upon the foundation laid by previous missions such as the Earth Radiation Budget Experiment (ERBE), will lead to a better understanding of the role of clouds and the energy cycle in global climate change.


+
What is the CERES instrument?

    What is the CERES instrument? : ANSWER
The CERES instrument draws heavily on ERBE heritage, both in design and in the way the instruments are operated in flight.

CERES Instrument


The radiometer sensor system consists of three co-aligned broadband thermistor bolometer detectors, each with an active and a compensating flake. The three detectors are identical except for optical filters on two detectors (longwave and shortwave) which restrict their spectral ranges to a portion of the Earth's radiation bandwidth. Smaller detector fields-of-view and a reduction in aliasing effects increase the resolution of the CERES instruments over that of ERBE. More importantly, the CERES instrument will have a significant reduction in the electronic noise output by the detectors.


+
What is the spectral range of the 3 CERES detectors?

    What is the spectral range of the 3 CERES detectors? : ANSWER
Detector Spectral Range
(microns)
Total 0.3 - 100.0
Shortwave 0.3 - 5.0
IR Window 8.0 - 12.0

+
What is equator crossing time of the CERES satellites?

    What is equator crossing time of the CERES satellites? : ANSWER
Satellite Local Equator Crossing Time
Terra 10:30 AM
Aqua 13:30 PM (part of the A-Train suite of satellites)
NPP 13:30 PM

+
Where can I find the definition of an acronym?

    Where can I find the definition of an acronym? : ANSWER
CERES has compiled a comprehensive list of acronyms here.

Links to other related acronym sites:


General Data Characteristics

+
What is the Spatial Coverage of CERES Data?

    What is the Spatial Coverage of CERES Data? : ANSWER
The CERES collection is a global data set whose spatial coverage depends on the satellite orbit. The spatial coverage of CERES data over a 24hr period is shown in the following table.

CERES Spatial Coverage at Surface
Spacecraft:
Instrument(s)
Minimum
Latitude
(deg)
Maximum
Latitude
(deg)
Minimum
Longitude
(deg)
Maximum
Longitude
(deg)
Spacecraft
Altitude
(km)
TRMM: PFM -4040-180 180350
Terra: FM1 & FM2 -9090-180 180705
Aqua: FM3 & FM4 -9090-180 180705
NPP: FM5 -9090-180 180825

+
What is FOV?

    What is FOV? : ANSWER
The terms Field of View (FOV) and footprint are synonymous. The CERES FOV is determined by its PSF (point spread function) which is a two-dimensional, bell-shaped function that defines the CERES instrument response to the viewed radiation field.

The resolution of the CERES radiometers is usually referenced to the optical FOV which is 1.3° in the along-track direction and 2.6° in the cross-track direction. For example, on TRMM with a satellite altitude of 350 km, the optical FOV at nadir is 8 X 16 km which is frequently referred to as an equivalent circle with a 10 km diameter, or simply as 10 km resolution. On EOS-AM with a satellite altitude of 705 km, the optical FOV at nadir is 16 X 32 km or 20 km resolution.

The CERES FOV or footprint size is referenced to an oval area that represents approximately 95% of the PSF response. Since the PSF is defined in angular space at the instrument, the CERES FOV is a constant in angular space, but grows in surface area from a minimum at nadir to a larger area at shallow viewing angles. For TRMM, the length and width of this oval at nadir is 19 X 15 km and grows to 138 X 38 km at a viewing zenith angle of 70°. For EOS-AM/PM, the length and width at nadir is 38 X 31 km and grows to 253 X 70 km at a viewing zenith angle of 70°.

+
What is TOA?

    What is TOA? : ANSWER
The TOA, Top-of-the-Atmosphere, is a surface approximately 20 km above the Earth surface. Specifically, the TOA is an ellipsoid
x2/a2 + y2/a2 + z2/b2 = 1 ; where a = 6408.1370 km and b = 6386.6517 km

+
How is LW calculated?

    How is LW calculated? : ANSWER
Since not measured directly, the LW TOA radiance is determined using the TOT – SW measurements, each corrected for its spectral response. The LW TOA flux is determined by applying an empirical Angular Distribution Model (ADM) anisotropic correction factor to the LW radiance.

+
What are TOA and Surface Fluxes?

    What are TOA and Surface Fluxes? : ANSWER
As the radiation from Sun reaches Earth it first interacts with top of the atmosphere (TOA) layers, then with various atmospheric layers containing gases, clouds, aerosols, and/or other constituents before reaching the surface. In each of these material layers solar radiation is being scattered and/or absorbed. Moreover, these atmospheric and surface constituents emit their own share of radiation. Due to the specifics of this complex interaction, one can separate its energetics it in two primary spectral parts: the shortwave (SW) and the longwave (LW). Depending on the specifics of the physical processes under investigation, this broad spectra can be further divided into finer and finer spectral intervals.

+
What are Up, Down and Net Fluxes?

    What are Up, Down and Net Fluxes? : ANSWER
The term flux is defined as an energy flow through a unit area over a unit time; hence the units of W m-2. It is an important term in characterizing our climate. As radiation interacts with matter at all atmospheric layers and surfaces, it is important to measure, understand, and model the spatial, temporal and spectral distribution of these fluxes. Given the vertical layered structure of Earth atmosphere above underlying surfaces, the vertical variability of these fluxes is of particular interest.Hence the term "up" and "down" for characterizing the direction of flow of radiative fluxes at a particular level. Moreover, by counting in or out these "up" and "down" energy fluxes, one can define a net flux that is ultimately responsible for the net energy loss or gain within any two such layers. This concept is important in defining the radiative heating or cooling of each atmospheric/surface element.

+
What are the CERES Data types and default values?

    What are the CERES Data types and default values? : ANSWER
Data Type Default Value
1 byte integer 127
2 byte integer 32767
4 byte integer 2147483647
4 byte real 3.402823E+38
8 byte real 1.7976931E+308

+
What are the CERES Data scene types?

    What are the CERES Data scene types? : ANSWER
 
Surf
Index
CERES Surface Type
1 Evergreen Needle Forest
2 Evergreen Broadleaf Forest
3 Deciduous Needle Forest
4 Deciduous Broadleaf Forest
5 Mixed Forest
6 Closed Shrubs
7 Open Shrubs
8 Woody Savannas
9 Savannas
10 Grassland
 
Surf
Index
CERES Surface Type
11 Wetlands
12 Crops
13 Urban
14 Crop/Mosaic
15 Permanent Snow/Ice
16 Barren Desert
17 Water
18 Tundra
19 Land snow
20 Sea Ice

+
What is meant by Clear-Sky or All-Sky?

    What is meant by Clear-Sky or All-Sky? : ANSWER
All-Sky - The all-sky (or total) scene is determined from all CERES footprints (20 km nominal resolution) within the given temporal or spatial domain.
Clear-Sky - The clear-sky scene has different algorithms depending on the product, as explained below:
  • ERBElike - The clear-sky scene is determined from CERES footprints (20 km nominal resolution) that were crudely identified as clear using the ERBE (MLE, Wielicki and Green, 1989) scene id algorithm, which essentially uses climatological, zonal LW thresholds and apriori SW thresholds based on 12 scene ids. If there are no clear-sky footprints within the temporal or spatial domains the flux is default. CERES vs ERBE clear-sky scene identification comparison here.
  • SSF - The clear-sky scene is determined from CERES footprints (20 km nominal resolution) that are 99% clear, as identified by CERES-MODIS clear-sky mask from the MODIS pixels contained within the CERES footprint. However, there are many cloudy regions (like ITCZ, maritime stratus, etc.) that may not have any clear-sky observations for one particular month. The CERES SSF product makes no attempt to fill these regions.
  • EBAF - The clear-sky scene is determined from CERES footprints (20 km nominal resolution) that are 99% clear, as identified by CERES-MODIS clear-sky mask from the MODIS pixels contained within the CERES footprint. The EBAF (clear-sky filled) product has filled all non-observed clear-sky regional fluxes for a complete clear-sky global map. All temporal and spatial domains should have clear-sky fluxes.
The LW all-sky and clear-sky surface flux is calculated at all hourly increments during the month, regardless of cloud amount. The GEOS-4 profile is the same for both clear-sky and all-sky conditions. The all-sky condition includes the cloud properties in the LW flux parameterization. The SW clear-sky/all-sky surface flux is only calculated from hourly increments that have an associated observed or CERES-only flux temporally interpolated TOA clear-sky SW flux/TOA all-sky SW flux during the month. However, many cloudy (ITCZ, maritime stratus) regions may not have CERES clear-sky footprint observations for the entire month; the CERES SSF product makes no attempt to fill these regions. If there are no clear-sky footprints within the temporal or spatial domains the surface SW flux is set to a default value.

+
Which CERES Instruments are in Cross-Track Mode?

    Which CERES Instruments are in Cross-Track Mode? : ANSWER

There are two CERES instrument onboard both the Terra and Aqua satellites. One is typically in cross-track mode and the other in either the RAPS (Rotating Azimuth Plane Scan) or FAPS (Fixed Azimuth Plane Scan) mode. The cross-track instrument is recommended by the CERES Science Team since the spatial distribution of footprints is uniform.
Also over time, the instrument in RAPS mode has increased spectral darkening of the transmissive optics.

Click here link to external site for examples of instrument scanning spatial sampling.

The tables list the recommended cross-track instrument (Terra FM1 or FM2, Aqua FM3 or FM4) for each month.


Terra Satellite
  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
2000     FM2 FM2 FM1 FM1 FM1 FM2 FM2 FM2 FM1 FM1
2001 FM1 FM2 FM2 FM2 FM1 FM1 FM1 FM2 FM2 FM2 FM1 FM1
2002 FM1 FM1 FM1 FM1 FM1 FM1 FM1 FM1 FM1 FM1 FM1 FM1
2003 FM1 FM1 FM1 FM1 FM1 FM1 FM1 FM1 FM1 FM1 FM1 FM1
2004 FM1 FM1 FM1 FM1 FM1 FM1 FM1 FM1 FM1 FM1 FM1 FM1
2005 FM1 FM1 FM1 FM1 FM1 FM1 FM1 FM1 FM1 FM1 FM1 FM1
2006 FM2 FM2 FM1 FM1 FM1 FM1 FM1 FM1 FM1 FM1 FM1 FM1
2007 FM1 FM1 FM1 FM1 FM1 FM1 FM1 FM1 FM1 FM1 FM1 FM1
2008 FM1 FM1 FM1 FM1 FM1 FM1 FM1 FM1 FM1 FM1 FM1 FM1
2009 FM1 FM1 FM1 FM1 FM1 FM1 FM1 FM1 FM1 FM1 FM1 FM1
2010 FM1 FM1 FM1 FM1 FM1 FM1 FM1 FM1 FM1 FM1 FM1 FM1
2011 FM1 FM1 FM1 FM1 FM1 FM1 FM1 FM1 FM1 FM1 FM1 FM1
2012 FM1 FM1 FM1 FM1 FM1 FM1 FM1 FM1 FM1 FM1 FM1 FM1


Aqua Satellite
  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
2002             FM4 FM4 FM4 FM4 FM3 FM3
2003 FM3 FM4 FM4 FM4 FM3 FM3 FM3 FM4 FM4 FM4 FM4 FM4
2004 FM4 FM4 FM4 FM4 FM4 FM4 FM4 FM4 FM4 FM4 FM4 FM4
2005 FM4 FM4 FM4 FM3 FM3 FM3 FM3 FM3 FM3 FM3 FM3 FM3
2006 FM3 FM3 FM3 FM3 FM3 FM3 FM3 FM3 FM3 FM3 FM3 FM3
2007 FM3 FM3 FM3 FM3 FM3 FM3 FM3 FM3 FM3 FM3 FM3 FM3
2008 FM3 FM3 FM3 FM3 FM3 FM3 FM3 FM3 FM3 FM3 FM3 FM3
2009 FM3 FM3 FM3 FM3 FM3 FM3 FM3 FM3 FM3 FM3 FM3 FM3
2010 FM3 FM3 FM3 FM3 FM3 FM3 FM3 FM3 FM3 FM3 FM3 FM3
2011 FM3 FM3 FM3 FM3 FM3 FM3 FM3 FM3 FM3 FM3 FM3 FM3
2012 FM3 FM3 FM3 FM3 FM3 FM3 FM3 FM3 FM3 FM3 FM3 FM3

Note: Aqua FM4 instrument experienced a SW instrument failure on March 30, 2005.



Data Product Information

+
How are dataset and file names generated?

    How are dataset and file names generated? : ANSWER
A CERES Dateset name is formed
CER_‹ProductID›_‹ Sampling-Strategy›_‹ Production-Strategy
Eg. Dataset Name: CER_SSF_Terra-FM1-MODIS_Edition2B

A CERES file name is formed using the dataset name with additional information to make each file name unique.
CER_‹ProductID›_‹ Sampling-Strategy›_‹ Production-Strategy›_‹ Config-Code›.‹ date
Eg. File Name: CER_SSF_Terra-FM1-MODIS_Edition2B_120145.2001052812
Dataset/File Name
Elements
Description Example Value(s)
ProductID The science data product identification value (external distribution) SSF, CRS, SYN, ES8
Sampling-Strategy Satellite, instrument, and imager TRMM-PFM-VIRS,
Terra-FM1-MODIS,
Aqua-FM3-MODIS
Production-Strategy Edition or campaign At-launch,
ValidationR1,
Edition2,
Edition2B
Config-Code 6-digit file and software version management code number 120145
date Date in the form YYYYMMDDHH where;
  YYYY 4-digit integer defining data acquisition year,
  MM 2-digit integer defining data acquisition month,
  DD 2-digit integer defining the data acquisition day,
  HH 2-digit hour integer defining the data acquisition hour.
2001052812
  (May 28, 2001 GMT hr12)

+
Which CERES Product Should I Use?

    Which CERES Product Should I Use? : ANSWER
  • CERES best estimate (net-balanced) TOA fluxes, use EBAF especially for evaluation of climate model and energy budget
  • CERES best estimate surface fluxes, use SYN
  • CERES consistent flux and cloud properties, use SYN for instantaneous footprint level, use CRS
  • CERES TOA fluxes for long term climate trend evaluation, use SSF with associated cloud and aerosol properties
  • CERES instantaneous footprint radiances, fluxes and MODIS clouds, use SSF
  • CERES TOA fluxes and clouds to compare with A-Train (Aqua) products, use SSF
  • Compare original ERBE (1985-1989) fluxes with CERES, use ERBElike no CERES algorithm improvements
  • CERES monthly cloud properties in a similar format to ISCCP, use ISCCP-D2like
  • CERES quicklook (near realtime), use FLASHFLUX

+
What is the ERBElike Level 2 Instantaneous Product?

    What is the ERBElike Level 2 Instantaneous Product? : ANSWER
The ERBE-like Instantaneous TOA Estimates (ES-8) product contains 24 hours of instantaneous Clouds and the Earth's Radiant Energy System(CERES) data for a single scanner instrument. The ES-8 contains filtered radiances recorded every 0.01-second for the total (TOT), shortwave (SW), and window (WN) channels and the unfiltered SW, longwave (LW), and WN radiances. The SW and LW radiances at spacecraft altitude are converted to Top-of-the-Atmosphere (TOA) fluxes with a scene identification algorithm and Angular Distribution Models (ADMs) which are "like" those used for the Earth Radiation Budget Experiment (ERBE). The TOA fluxes, scene identification, and angular geometry are included on the ES-8. Complete listings of metadata and science parameters are listed in Tables 2.2-1 through 2.2-4.

+
What is the ERBElike Level 3 Monthly Product?

    What is the ERBElike Level 3 Monthly Product? : ANSWER
The ERBE-like Monthly Geographical Averages (ES-4) product contains a month of space and time averaged Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The ES-4 is also produced for combinations of scanner instruments. For each observed 2.5° spatial region, the daily average, the hourly average over the month, and the overall monthly average of shortwave and longwave fluxes at the Top-of-the-Atmosphere (TOA) from the CERES ES-9 product are spatially nested up from 2.5° regions to 5° and 10° regions, to 2.5°, 5°, and 10° zonal averages, and to global monthly averages. For each nested area, the albedo and net flux are given. For each region, the daily average flux is estimated from an algorithm that uses the available hourly data, scene identification data, and diurnal models. This algorithm is "like" the algorithm used for the Earth Radiation Budget Experiment (ERBE).

The ES-4 archival data product is created as an HDF file which contains nine HDF Vgroups corresponding to regional, nested regional, zonal, and global averages (see Table 2.4-3). There are 10,368 2.5° regions for the ERBE-like data; therefore, there is a maximum of 10,368 records in the 2.5° regional data set. The second set of data is the 2.5° nested to 5° regional data, which constitutes a maximum of 2,592 records. The third set of data is the 5° nested to 10° regional data, which constitutes up to 648 records. The fourth, fifth, and sixth sets of data are the 2.5°, 5°, and 10° zonally averaged data which constitute 72, 36, and 18 records, respectively. The seventh, eighth, and ninth sets of data are the 2.5°, 5°, and 10° globally averaged data which constitutes 1 record each. A summary of the contents of this data product can be found in Table 2.4-1.

+
What is the SSF Level 2 Instantaneous Product?

    What is the SSF Level 2 Instantaneous Product? : ANSWER
The Single Scanner Footprint TOA/Surface Fluxes and Clouds (SSF) product contains one hour of instantaneous Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The SSF combines instantaneous CERES data with scene information from a higher-resolution imager such as Visible/Infrared Scanner (VIRS) on TRMM or Moderate-Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua. Scene identification and cloud properties are defined at the higher imager resolution and these data are averaged over the larger CERES footprint. For each CERES footprint, the SSF contains the number of cloud layers and for each layer the cloud amount, height, temperature, pressure, optical depth, emissivity, ice and liquid water path, and water particle size. The SSF also contains the CERES filtered radiances for the total, shortwave (SW), and window (WN) channels and the unfiltered SW, longwave (LW), and WN radiances. The SW, LW, and WN radiances at spacecraft altitude are converted to Top-of-the-Atmosphere (TOA) fluxes based on the imager defined scene. These TOA fluxes are used to estimate surface fluxes.

Only foot prints with imager coverage are included on the SSF which is much less than the full set of footprints on the CERES ES-8 product. The number of possible footprints on an SSF depends on the elevation scan mode, azimuth scan mode, and height of the satellite. Since elevation and azimuth scan modes are programmable, the range on the number of footprints in an SSF product has been set to the largest possible range, namely 0..360000 as shown in Table2.5-2. A smaller number of footprints is used in SSF sizing estimates, namely the estimated maximum number of TRMM full Earth-view footprints per hour given a normal elevation scan and an along-track azimuth scan. Accounting for the need for imager coverage, the actual number of footprints is expected to be even smaller. This reduction of footprints due to lack of imager coverage is very evident when CERES is operating in a cross-track azimuth scan mode. A complete listing of parameters for this data product can be found in Tables 2.5-3 to Table 2.5-15.

 
 
 
Page Curator: Joanne Saunders
NASA Official: Dr. Norman Loeb
Page Last Modified: 02/05/2014 15:28
divider divider
+ Privacy Policy and Important Notices
+ USA.gov
+ ExpectMore.gov
+ Multimedia Browser Plug-ins
+ Comments or Questions?