

Understanding relationships between satellite, model, and ground-based surface temperature characterizations from overcast to clear conditions

B. Scarino¹, W. L. Smith¹, Jr., S. Sun-mack², B. Shan², R. Palikonda², and D. Rutan²

¹NASA Langley Research Center, Hampton, VA ²Analytical Mechanics Associates, Hampton, VA

- Cloud mask threshold approaches rely on cloud-free skin temperature (T_s) estimate
- *T_s* in cloudy condition necessary for optical depth and height retrievals
- Downstream radiation budget calculations rely on clouds and on model T_s in cloudy condition
- High variance in observed + model T_s in all-sky conditions
- In GEO we estimate a cloud-free T_s with reasonably good accuracy using cloudfree observations, model 2-m air temperature (T_a) , and a deep neural network (DNN)

Can relationships between observed clear-sky T_s and modeled T_s+T_a help us estimate a more reliable all-sky T_s ?

- Highlight cloud-fraction-dependent relationships of:
 - Model *T_s* and satellite *T_s*
 - Model T_s and model T_a
 - Model T_a and station T_a
- Suggest paths toward an observation-linked all-sky T_s solution
- Highlight GEO clear-sky T_s DNN developments and explain limitations

~1/3 of land is "partly cloudy" – how to estimate an expected T_s for all-sky conditions ?

Model T_s – Satellite T_s Differences: Day

- 0% satellite cloud fraction at 0.5°x0.5°
- Pronounced, positive regional biases in GEOS-5.4.1 – broadly negative biases in GEOS-IT and ERA5
- Relatively comparable GEOS-IT and ERA5 biases, although still distinct (especially where often cloudy)

High daytime variance in regional T_s agreement between different models and satellites observations

Model T_s – Satellite T_s Differences: Day

- For increasing satellite cloud fraction
- Would expect <u>cooler</u> daytime allsky model T_s as cloudiness increases
- Daytime cloud contamination significantly impacting clear-sky observations in allsky grid tiles

No obvious correlation between regional biases and sample sizes (not shown)

Model T_s – Satellite T_s Differences: Night

- For increasing satellite cloud fraction
- Would expect warmer nighttime all-sky model T_s as cloudiness increases
- Warm bias tendency compounded by cloud contamination of clear-sky observations

Not *obvious* to conclude whether GEOS-IT is "better" than GEOS5.4.1, or if ERA5 is "better" than GEOS-IT

Model T_s – Satellite T_s Differences: Summary

- All months share these tendencies, although with different offsets
- Driven primarily by imperfect cloud masking (highlights need?)
- GEOS-IT ERA5 relationship uninfluenced by cloud fraction

Variance <u>increases</u> with increasing cloud fraction

Model T_a – Model T_s Differences: Day

- Can understanding model T_a-T_s relationships help inform reliable allsky T_s estimates
- 0% <u>model</u> cloud fraction at 0.5°x0.5°
- Daytime 2-m T_a significantly colder than T_s, often where dry or mountainous

GEOS-IT $T_a - T_s$ more often neutral than ERA5 difference, which is >5 K over much of world

Model T_a – Model T_s Differences: Day

- For increasing model cloud fraction
- Tendency toward 0 K bias as cloudiness ↑
- GEOS-5.4.1 not often claiming 100% overcast

Clear \rightarrow overcast differences in model $T_a - T_s$ may inform expected T_s bias in cloudy conditions

Model T_a – Model T_s Differences: Night

- Clear-sky bias patterns cover similar regions, but reverse of day
- Same tendency toward neutral bias with ↑ clouds
- Models provide allsky T_s for a grid tile, but we don't have global all-sky ground truth

Can we interpret model clear \rightarrow overcast $T_a - T_s$ relationships to produce a more accurate cloudy T_s ?

Model T_a – Station T_a Differences

- We know model-satellite clear-sky consistency is poor
- With station data, we can test model T_a consistency for clear \rightarrow overcast

Overcast model-station consistency about the same as that for clear

Model T_a – Model T_s Differences: Summary

- As clear \rightarrow overcast, $T_s \rightarrow T_a$
- True, on average, for all months, day and night
- Variance <u>decreases</u> with increasing cloud fraction
- Anchor clear-sky satellite estimates to curves in a model – later tie in optical thickness estimate

A good first-order assumption?

Clear-sky T_s DNN Estimates: Day

- Clear-sky DNN T_s estimates should be minimally affected by cloud contamination
- Trace cloud contamination where especially cloudy may have influenced training data (a)
- May explain why

 (a) weighted bias
 does not decrease
 further with ↑
 cloud fraction

GEO DNN *T_s* value may be a more reliable clear-sky estimate than observations when partly cloudy

Clear-sky T_s DNN Estimates: Night

- Expect (a) to warm as emitted cloud radiance increases in the model
- Immediately offset by increased dominance of cloudy high elevation regions
- Cloudy mountains seemingly modeled colder than satellite measurements

Nighttime GEO DNN *T_s* also appears to dodge cloud contamination issue

Clear-sky T_s DNN Summary

CERES

 For daytime (a), trace cloud contamination initially, then model temperature drops

 For nighttime (a), immediate influence from cold mountainous regions, then thermal emittance strengthens

Patterns are consistent across seasons

- Models deviate significantly from observed surface temperatures in all clear/cloudy conditions
- Satellite-based clear-sky T_s estimates can help produce a more regionally consistent cloud mask
- There is no global ground truth for all-sky/overcast conditions
- Maybe good enough to just use ERA5 because of assimilation practices, but not available in CERES – still shows satellite-relative bias like other models
- Perhaps tendency for $T_s \rightarrow T_a$ as clear \rightarrow overcast is a good first-order assumption for improving all-sky T_s (anchored to expected satellite clear-sky T_s)
- Clear-sky DNN T_s estimates are a good starting point for testing this effort

Additional Slides

Model T_s – Satellite T_s Differences: Samples

No obvious correlation between regional biases and sample sizes

Model T_s – Satellite T_s Differences: Night

- 0% satellite cloud fraction at 0.5°x0.5°
- Overall more neutral, but all models show strong regional biases
- GEOS-IT and ERA5 have greater similarity than during the day

Whether day or night, not *obvious* to conclude if GEOS-IT is "better" than GEOS5.4.1, or if ERA5 is "better" than GEOS-IT

Model T_a – Model T_s Differences: Night

- Clear-sky bias patterns cover similar regions, but reverse of day
- Same tendency toward neutral bias with ↑ clouds
- Models provide allsky T_s for a grid tile, but we don't have global all-sky ground truth

Can we interpret model clear \rightarrow overcast $T_a - T_s$ relationships to produce a more accurate cloudy T_s ?

Model T_s – Model T_a Differences

Model T_s and T_a are reasonably close in overcast conditions at surface sites

Clear-sky T_s DNN Developments/Limits

• Previous DNN:

- Predictors: GEOS-IT T_a, Latitude, Longitude, Local Time, SZA, IGBP, day-of-year, and snow flag
- Skillful on average, regional biases strongly tied to model biases (suggests data representation issue)
- New DNN:
 - Substitutes month for day-of-year
 - Adds water percentage and GEOS-IT cloud fraction
 - Better engineered training/validation/testing splitting
 - An improvement, but persistent representation issue suggests more years of training data are necessary

Previous DNN

New DNN

Above testing set results represent 10% of available July days