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Surface Flux Introduction
• FLASHFlux Objective: 

– Provide satellite-based observations of TOA radiative fluxes, Clouds properties, and Surface 
radiative fluxes within 2-3 days for Level 2 SSF and up to a week for Level 3 TISA.

• Context
– The Langley Surface Parameterizations (LPSA/LPLA) are parameterized radiative transfer methods 

using various approximations for broadband scattering/absorption/transmission of the atmosphere 
and limited inputs for surface fluxes. 

• The models are older and efforts to update them tend to cause unintended effects
– The Fu-Liou surface algorithm employed in CRS data products requires inputs that are not available 

and/or would require too much processing time for low latency processing.
• Surface Flux Objectives

– To replace the Langley Surface Parameterization (LPSA/LPLA) models with:
• a Neural Network trained model that better represents the physics of radiative transfer in the 

atmosphere according to the CERES Fu-Liou algorithm
• provide efficient estimates of surface fluxes for the FLASHFlux SSF data product, more consistent with 

the CRS (which is to become the primary surface flux product for CERES footprints).
– Allows for more reliable estimates of surface flux models for intercomparison with other products (i.e., 

NOAA-ABI, CM-SAF SARAH) and users using overpass data for solar power and related applications
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Shortwave Training Features

• Leave One Feature Out (LOFO)
• involves repeatedly retraining the 

model and omitting a variable for 
each retrain, calculating difference 
in loss from the base model. 

• An increase in loss 
(green) indicates high importance 
and a decrease in loss 
(red) indicates negative impact to 
model performance.

• Selecting the correct feature helps 
improve the  performance and 
runtime of the model.

• Running LOFO gives us insight into 
how different features cross-
correlate and its impact on the 
model.

• Shortwave Insolation and Solar 
Zenith Angle have high correlation, 
so LOFO doesn’t give full story here
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Terra Daytime
Train dataset: CRS_2019



• Leave One Feature Out (LOFO)
• An increase in loss 

(green) indicates high importance 
and a decrease in loss 
(red) indicates negative impact to 
model performance.

• LOFO plot doesn’t give the entire 
story

• Currently investigating effects of 
layer 1 variables of Cloud 
Temperature and Cloud Fraction 
and NSAT on model performance

• Why LOFO?
• Many methods to select important 

features like Permutation Feature 
Importance,  Partial Dependence 
Plots, Recursive Feature 
Elimination, and SHAP values.

• Advantage of LOFO is that it 
is model agnostic and yield 
negative feature that hurt 
performance upon inclusion

Longwave Training Features
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Surface SW Down

CERES Science Team Meeting 5

Model Comparisons – SW (All sky) January

Difference with CRS FF 
(day)

ANN
(day)

ANN
(month)

Mean Squared Error 9123.65 168.75 163.284
Mean Absolute Error 49.71 7.11 7.036
Mean Bias Error 23.93 -0.29 0.152
RMS Error 95.52 12.99 12.778

Terra Daytime
ANN-CRS Total January Stats:

For Surface SW Down Daytime, we can 
see a tighter range of differences and a 
smaller bias relative to FF. Our 
differences are consistently small across 
all flux values. We are investigating the 
cause behind the systematic differences 
for the area along the sub-Sahara and 
Central Asia.

Train dataset: CRS_2019
Test dataset: CRS_2020
*FF uses GMAO GEOS5124 while CRS 
and ANN uses GMAO CERES541
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Model Comparisons – SW Combined Models

Difference with CRS FF 
(day)

ANN
(day)

Mean Squared Error 9123.65 174.82
Mean Absolute Error 49.71 7.13
Mean Bias Error 23.93 0.67
RMS Error 95.52 13.22

Terra Daytime
ANN-CRS Total January Stats:

Using separate clear sky – cloudy sky 
models did not give us better results

Does not reduce differences in sub-
Sahara Africa and Central Asia or 
provide any other advantage

Surface SW Down
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Model Comparisons – LW Day January

Difference with CRS FF 
(day)

ANN
(day)

ANN
(month)

Mean Squared Error 142.24 12.06 12.331
Mean Absolute Error 8.94 2.49 2.504
Mean Bias Error 1.93 0.28 0.251
RMS Error 11.93 3.47 3.512

Terra Daytime
ANN-CRS Total January Stats:
Surface LW Down Daytime, 
ANN differences with CRS are 
consistently small across all flux 
values compared to FF. 

The bottom plot highlights the 
differences between FLASHFlux and 
CRS. These differences are at least 
partly attributed to differing 
meteorological inputs. 

Surface LW Down
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Surface LW Down
Terra Nighttime
ANN-CRS Total January Stats:

ANN differences are 
consistently small across all flux 
values. Some areas over 
continents and areas involving 
cloud patterns can be 
improved. 
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Model Comparisons – LW Night January

Difference with CRS FF 
(day)

ANN
(day)

ANN
(month)

Mean Squared Error 216.16 9.71 9.497
Mean Absolute Error 10.53 2.31 2.298
Mean Bias Error 0.99 0.22 0.244
RMS Error 14.7 3.12 3.082
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• Using Jan and July 2019 training 
sets, computed flux estimates 
for Jan and July 2020

• Compared CRS, ANN and 
archive FLASHFlux (v4A) with 
BSRN surface measurements

• CRS and ANN have nearly 
identical statistics and similar 
difference distributions => 
showing success of the ANN

• Both CRS and ANN, for these 
months reduce the bias (from 
+21 to ~ -10 W m-2) but show a 
nearly 50 W m-2 reduction in 
RMS and correlation

• ANN SW is significantly 
improving fluxes over FF 
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Surface Validations – SW Jan & July
SW Surface Flux Validation
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• Using Jan and July 2019 training 
sets, computed flux estimates 
for Jan and July 2020

• Compared CRS, ANN and 
archive FLASHFlux (v4A) with 
BSRN surface measurements

• CRS and ANN have nearly 
identical statistics and similar 
difference distributions => 
showing success of the ANN

• For daytime LW: CRS, ANN and 
LPLA are compatible, but CRS 
and ANN show slightly better 
RMS and correlation
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Surface Validations – LW Day Jan & July
Daytime LW Flux Validation

5/15/2024



• Using Jan and July 2019 training 
sets, computed flux estimates for 
Jan and July 2020

• Compared CRS, ANN and 
archive FLASHFlux (v4A) with 
BSRN surface measurements

• CRS and ANN have nearly 
identical statistics and similar 
difference distributions => 
showing success of the ANN

• For daytime LW, CRS, ANN and 
LPLA are compatible:

• LPLA shows slightly better bias
• CRS and ANN show slightly 

better RMS and correlation
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Surface Validations – LW Night Jan & July
Nighttime LW Flux Validation
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Conclusion
• An ANN was developed by training with the CRS data for all-sky surface SW and LW fluxes

– Utilized the Leave-One-Feature-Out to evaluate the importance and then select various key inputs
• The resulting surface fluxes from the ANN shows near identical statistics and distribution to ground 

observations when compares to CRS.
• ANN SW model shows significant improvements over the LPSA model use in FLASHFlux.
• ANN LW model shows a larger bias compares to the LPLA model use in FLASHFlux. 

• Future Work
– Assess key areas of uncertainty:

• Investigate systematic differences in the ANN SW model in comparison to the CRS over the sub-Sahara and 
Central Asia.

• Assess impact of adding a near surface temperature inversion correction (Gupta 2010) as implemented in the LPLA 
to help dry-arid region and polar regions

– Use FLASHFlux SSF with GMAO GEOS-IT meteorology as input to test the sensitivity of the ANN fits.
– Determine if January trained fits can be use seasonally or if monthly training for each fits are required.
– Testing on multiple years’ data using same training model
– Training new ANN using Aqua CRS data and test it with Aqua SSF and NOAA-20 SSF.
– Training SW & LW Net model
– Refining ANN architecture for preparation for operations
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Gupta et. al., J. Appl. Meteor. Climatol, 49, 
1579-1589
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CERES FLASHFlux Overview
• FLASHFlux Overview

– Provides satellite-based observations of radiative fluxes and cloud systems within a week
– CERES typically takes several months before release
– FLASHFlux uses CERES based production system through inversion
– FLASHFlux uses a simplified calibration, an operational meteorological product from GMAO anand 

it’s own surface parameterization.
– Terra and NOAA20 Satellites

• FLASHFlux Latency Objectives
– SSF products within 3-4 days 
– Global 1x1 daily averages from FF TISA; goal: 5-7 days latency

• FLASHFlux Uses
– Primarily used for applied science and education (i.e., POWER and Globe Clouds)
– Supports also QC for selected missions (e.g., NOAA NESDIS)
– TOA gridded fluxes; normalized to TOA EBAF for annual “State of the Climate” assessments

5/14-16/2024 CERES Science Team Meeting 14



Mean Squared Error Bias
• Our initial run for SW surface flux down included the training variables 

TOA insolation, solar zenith angle, cloud fraction, cloud optical depth, 
precipitable water vapor, aerosol optical depth, and altitude. 

•
Our final run included all the above variables except for cloud optical 
depth, we instead ran the exponential function of the weighted average 
of the log value of COD for each of the 2 cloud layers, we also included 
TOA reflected shortwave in our features.
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Model Improvement

• Our initial run for LW surface flux down included the training variables 
effective temperature, cloud fraction, cloud optical depth, precipitable 
water vapor, potential temperature gradient, cloud temperature, and 
altitude. 

•
Our final run (daytime and nighttime) included all the above variables 
and near surface air temperature, aerosol optical depth, temperature at 
surface and 500 hPA and 850 hPa, surface pressure, cloud fractions and 
temperatures and optical depths for each layer, and cloud base 
temperature.



Surface SW Down
Terra Daytime
ANN-CRS Total July 
Stats:
 
- Significantly worse if using 
January trained model

5/14-16/2024 CERES Science Team Meeting 16

Model Comparisons – SW July

Difference with CRS FF
(day)

ANN 
(day)

ANN
(month)

Mean Squared Error 6864.6 260.14 195.644
Mean Absolute Error 41.13 8.43 7.412
Mean Bias Error 15.31 0.36 0.493
RMS Error 82.85 16.13 13.987



Surface LW Down
Terra Daytime
ANN-CRS Total July Stats:
 
- Significantly worse if using 
January trained model
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Model Comparisons – LW Day July

Difference with CRS FF
(day)

ANN 
(day)

ANN
(month)

Mean Squared Error 152.66 13.57 12.991
Mean Absolute Error 9.39 2.63 2.589
Mean Bias Error 0.41 0.06 0.263
RMS Error 12.36 3.68 3.604



Surface LW Down
Terra Nighttime
ANN-CRS Total July Stats:
 
- Significantly worse if using 
January trained model
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Model Comparisons – LW Night July

Difference with CRS FF
(day)

ANN 
(day)

ANN
(month)

Mean Squared Error 211.65 13.51 12.985
Mean Absolute Error 10.68 2.65 2.622
Mean Bias Error 0.8 -0.35 -0.263
RMS Error 14.55 3.68 3.603
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Surface Validations – SW Jan
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Surface Validations – SW July
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Surface Validations – LW Day Jan
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Surface Validations – LW Day July
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Surface Validations – LW Night Jan
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Surface Validations – LW Night July


