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NASA Optical Property Calculations Continuation Project
• Based on the suggestion that the same ice optical model should be used in a 

broadband radiation computation and retrieving the cloud description input to the 
broadband radiation model (Loeb et. al. 2018).
oNew Two-Habit Model (THMv2) optical property database developed and undergone 

preliminary testing for active-passive sensor ice cloud property retrieval consistency.
• New goal is to continue assessing the performance of THMv2 through extensive 

testing of spectral consistency and active-passive sensor consistency using 
observational data of various remote sensing instruments.
oGOES-16/17, MODIS and VIIRS spectral consistency.
oCALIPSO’s CALIOP and IIR active/passive retrieval consistency.
• Another new goal is to develop a temperature-dependent THMv2 database for far-

infrared (FIR) bands for the broadband radiative transfer model used by CERES 
Team.



New Broadband Two Habit Model Database (THMv2)

• 60-particle distorted single column and 20-particle 
distorted aggregate ensembles.
• Builds on the concept of the previously developed THM 

(Loeb et al. 2018).
• More accurate phase matrix backscattering calculations 

from Physical Geometric Optics Method (PGOM).
o Uses ray-tracing technique to analytically obtain electromagnetic 

near field and subsequently maps it to far field (physical optics).
o Replaces existing Improved Geometric Optics Method (IGOM) 

backscattering calculations.
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Recap: THMv2 Rigorous Testing
• Analytical results indicate THMv2 provided improved 532nm backscattering results in lidar ratio 

and integrated attenuated backscatter consistency with CALIOP observations.
o Active sensor consistency significantly improved.

• THMv2 achieves optimal spectral consistency using GOES-17 data compared to simplistic ice 
particle models but biases exist for certain ranges of ice cloud optical thicknesses (COTs) and 
solar zenith angles (SZA).
o Determined the presence of mixed-phase clouds likely the cause of negative spectral consistency ratios for 

optically thin clouds and small SZA.
o Causes of positive spectral consistency ratios biases for large SZA thought to be from longwave retrieval 

errors (cloud top temperature) but remain unexplained.
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GOES-16 (East)/17 (West) Collocation and its Affect on COT 
Retrievals
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where φ0 and λ0 are satellite subpoint latitude and 
longitude on Earth ,j and λ are the latitude and longitude 
of the observation point on Earth. 

Where H is the operational altitude of GOES-R, h is the cloud top 
height and VZA is the viewing zenith angle of the pixel in radian.
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Where 𝜑' and 𝜆' are the actual latitude and longitude of the observed cloud, and 𝑅2 is the radius of earth.

Parallax Correction Algorithm



• Interpolate MERRA-2 temperature profile and height data onto GOES-16/17 
images.
• Based on the retrieved cloud top temperature (CTT), the cloud top height is 

obtained by the interpolation of the MERRA-2 temperature profile
• Apply the parallax correction algorithm to derive the actual geolocation of the 

clouds.
• Collocate GOES-16/17 pixels by identifying the nearest ones.

Collocation Process



Comparison of retrieval results from VIS-NIR and TIR methods between GOES-16 and GOES-17 
based on two days data collocation results (2019-09-24, 2020-03-20)

To reduce the uncertainty caused by the collocation process, we only select collocated pixels that have cloud 
top height difference (|CTHGOES16-CTHGOES17|) less than 0.5 km.



• GOES-16/17 COT Ratio:
o < 1: greater GOES-17 COT
o > 1: greater GOES-16 COT

• COT retrieval results have 
relatively small variation along 
with VZA when SZA is less than 30 
degree.

• COT retrievals become more 
variant and exhibit higher 
uncertainty when the SZA exceeds 
30 degrees, in contrast to cases 
where SZA is less than 30 degrees.

Retrieval Results from VIS-NIR Method



• COT retrieval results have strong 
dependence on VZA. Larger VZA 
leads to a larger COT retrieval 
results.

• COT retrievals show less 
dependence on SZA, while 
exhibiting slightly higher 
uncertainty when SZA is greater 
than 30 degree

Retrieval Results from TIR Method



RMSE(inhom<0.1) = 0.330
RMSE(inhom>0.1) = 0.524

RMSE(inhom<0.1) = 0.674
RMSE(inhom>0.1) = 0.714
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• For the VIS-NIR method, COT retrievals from GOES-16 and GOES-17 demonstrate good consistency 
when cloud inhomogeneity is low. However, as cloud inhomogeneity increases, this consistency 
diminishes.

• For the TIR method, COT retrievals have less dependence on cloud inhomogeneity. 



THMv2 Spectral Consistency Tests for MODIS Bands
• Spectral consistency analyses for THMv2 database only performed using GOES-17 shortwave 

(SW), near-infrared (NIR), and thermal infrared (TIR) bands.
• Spectral consistency tests using MODIS bands currently being conducted.
o Analyses of the Nakajima-King and Split Window look-up table (LUT) differences between the THMv2 and 

previous version THM have been performed.
o Retrievals of ice cloud effective radius and COT will be conducted soon.
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COT 2-dimensional frequency
distribution created using 1
hour GOES-17 observations
from 20:00 – 20:50 UTC on
Sept. 23, 2019.



Nakajima-King LUT: MODIS Band 1 (0.647𝜇𝑚) vs. Band 6 
(1.629𝜇𝑚) 
• Shortwave (Band 1) reflectances mostly 

unchanged between THM and THMv2.
• Significant changes in NIR (Band 6) 

reflectances between databases.
o Retrievals likely to be more accurate for THMv2 for 

ice clouds containing small effective radii ice 
particles.

o Significantly more compressed large effective radii 
isolines for THMv2 leading to worse retrievals than 
THM.

• Likely caused by different habit fraction 
equations being used to develop THM and 
THMv2.
o Can noticeably affect the single-scattering 

properties.
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Nakajima-King LUT: MODIS Band 1 (0.64𝜇𝑚) vs. Band 7 (2.10𝜇𝑚) 
• Similar results as Band 1 vs. Band 6.
• THMv2 reflectance isolines compress for large 

effective radii.
• Bulk scattering properties shown to noticeably vary 

for NIR spectral region.
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Split Window: MODIS Band 29 (8.5µm) vs. 31 (11µm)
• No significant difference in Split-Window look-

up table.
• Differences in single-scattering properties, 

especially extinction efficiency, are minimal for 
these TIR bands.
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Far-Infrared Temperature Dependence of Ice
• Current ice cloud property parametrizations used in 

broadband radiative transfer models have 
pronounced shortcomings in assuming ice 
refractive index for a single ice particle 
temperature.
o Such assumptions could lead to systematic biases in 

broadband radiative transfer simulations in far-infrared 
(FIR) bands.

• The complex refractive index of ice significantly 
varies for a large range of FIR wavelengths.
o These significant variations can have a noticeable impact 

on the single-scattering properties of ice particles and 
therefore radiative transfer simulation results.

• Two upcoming satellite missions:
o NASA: Polar Radiant Energy in the Far Infrared Experiment 

(PREFIRE) (5 – 45µm)
o ESA: Far-infrared-Outgoing-Radiation Understanding and 

Monitoring (FORUM) (6.25 – 100µm)

Complex Refractive Index of Ice and Temperature

Wang et al. 2024



THMv2-TEMP: Development of a Temperature Dependent THMv2 
Database
• THMv2 will be expanded to include temperature-

dependent single-scattering properties for FIR wavelengths 
(14 – 200µm).
• 6 temperatures will be considered ranging from 170 – 

270K.
• Since only FIR wavelengths is primary focus, no Physical 

Geometric Optics Method (PGOM) calculations will be 
performed due to lack of backscattering.
• Temperature-dependent complex refractive index data to 

be used for development from Wang et al. 2020.
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Preliminary Single-Scattering 
Property Comparisons: 14.00µm



Preliminary Single-Scattering 
Property Comparisons: 26.00µm



• For GOES-16/17 retrieval analyses:
o VIS-NIR Method: SZA affects COT retrieval certainty (larger SZA = larger uncertainty).
o TIR Method: VZA affects COT retrieval magnitude (larger VZA = larger COT retrievals).
o Cloud inhomogeneity from averaging VIS reflectance pixels decrease GOES-16 and -17 COT retrieval consistency.
• MODIS Nakajima-King retrieval LUTs 
o THMv3 effective radius isolines compress for smaller effective radii than THMv2.
o Difference could be due to using difference habit fraction mixture/distorted particle shapes.
• Minimal difference in TIR split-window LUT due to scattering becoming less important.
• Preliminary THMv2-TEMP single-scattering property calculations show noticeable difference 

across the 170-270K temperature range.

• Spectral consistency tests will soon be performed for MODIS and VIIRS instruments.
o CALIOP and IIR active-passive consistency will also be performed.
o THMv2 habit fraction mixing ratios will probably be altered to further improve spectral consistency if needed.
• Plans to compare broadband flux RTM calculations utilizing THM, THMv2, and other 

conventional ice particle single-scattering databases against CERES observations.
• Development of the complete THMv2-TEMP database likely will be complete by end of year.
o IGOM calculations already complete but need to be reviewed.

Summary and Future Work
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