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NASA Optical Property Calculations Continuation Project

* Based on the suggestion that the same ice optical model should be used in a
broadband radiation computation and retrieving the cloud description input to the
broadband radiation model (Loeb et. al. 2018).

o New Two-Habit Model (THMv?2) optical property database developed and undergone
preliminary testing for active-passive sensor ice cloud property retrieval consistency.

* New goal is to continue assessing the performance of THMv2 through extensive
testing of spectral consistency and active-passive sensor consistency using
observational data of various remote sensing instruments.

o GOES-16/17, MODIS and VIIRS spectral consistency.
o CALIPSO’s CALIOP and IIR active/passive retrieval consistency.
* Another new goal is to develop a temperature-dependent THMv2 database for far-

infrared (FIR) bands for the broadband radiative transfer model used by CERES
Team.



New Broadband Two Habit Model Database (THMv2)
e
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GOES-16 (East)/17 (West) Collocation and its Affect on COT
Retrievals
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Geocentric angle Parallax Correction Algorithm
b= i—ocos"l(cos(cp — @p) cos(1 — 1))
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where @, and A, are satellite subpoint latitude and
longitude on Earth ,p and A are the latitude and longitude
of the observation point on Earth.

)

_ Hht VZA
r = an(H _—

Where H is the operational altitude of GOES-R, h is the cloud top
height and VZA is the viewing zenith angle of the pixel in radian.
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Where ¢, and A, are the actual latitude and longitude of the observed cloud, and R, is the radius of earth.



Collocation Process

* Interpolate MERRA-2 temperature profile and height data onto GOES-16/17
images.

* Based on the retrieved cloud top temperature (CTT), the cloud top height is
obtained by the interpolation of the MERRA-2 temperature profile

* Apply the parallax correction algorithm to derive the actual geolocation of the
clouds.

* Collocate GOES-16/17 pixels by identifying the nearest ones.



Comparison of retrieval results from VIS-NIR and TIR methods between GOES-16 and GOES-17
based on two days data collocation results (2019-09-24, 2020-03-20)
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Retrieval Results from VIS-NIR Method

* GOES-16/17 COT Ratio:
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Retrieval Results from TIR Method
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RMSE(inhom<0.1) = 0.330 RMSE(inhom<0.1) = 0.674
RMSE(inhom>0.1) = 0.524 RMSE(inhom>0.1) = 0.714
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* For the VIS-NIR method, COT retrievals from GOES-16 and GOES-17 demonstrate good consistency
when cloud inhomogeneity is low. However, as cloud inhomogeneity increases, this consistency
diminishes.

* For the TIR method, COT retrievals have less dependence on cloud inhomogeneity.



THMv2 Spectral Consistency Tests for MODIS Bands

* Spectral consistency analyses for THMv2 database only performed using GOES-17 shortwave
(SW), near-infrared (NIR), and thermal infrared (TIR) bands.

* Spectral consistency tests using MODIS bands currently being conducted.
o Analyses of the Nakajima-King and Split Window look-up table (LUT) differences between the THMv2 and
previous version THM have been performed.
o Retrievals of ice cloud effective radius and COT will be conducted soon.
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Nakajima-King LUT: MODIS Band 1 (0.647um) vs. Band 6

(1.629um)

e Shortwave (Band 1) reflectances mostly
unchanged between THM and THMv?2.

* Significant changes in NIR (Band 6)
reflectances between databases.

o Retrievals likely to be more accurate for THMv2 for
ice clouds containing small effective radii ice
particles.

o Significantly more compressed large effective radii
isolines for THMv2 leading to worse retrievals than
THM.

* Likely caused by different habit fraction
equations being used to develop THM and
THMv2.

o Can noticeably affect the single-scattering
properties.
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Nakajima-King LUT: MODIS Band 1 (0.64um) vs. Band 7 (2.10um)

 THMv?2 reflectance isolines compress for large

* Bulk scattering properties shown to noticeably vary

Extinction Efficiency

Asymmetry Factor

Similar results as Band 1 vs. Band 6.

effective radii.

for NIR spectral region.

THM-new vs. THM-prev Bulk Scattering Property Differences
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Split Window: MODIS Band 29 (8.5um) vs. 31 (11um)
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Far-Infrared Temperature Dependence of Ice

* Current ice cloud property parametrizations used in
broadband radiative transfer models have
pronounced shortcomings in assuming ice
refractive index for a single ice particle
temperature.

o Such assumptions could lead to systematic biases in
broadband radiative transfer simulations in far-infrared
(FIR) bands.

* The complex refractive index of ice significantly

varies for a large range of FIR wavelengths.

o These significant variations can have a noticeable impact
on the single-scattering properties of ice particles and
therefore radiative transfer simulation results.

* Two upcoming satellite missions:
o NASA: Polar Radiant Energy in the Far Infrared Experiment
(PREFIRE) (5 — 45um)
o ESA: Far-infrared-Outgoing-Radiation Understanding and
Monitoring (FORUM) (6.25 — 100um)

Imaginary

Complex Refractive Index of Ice and Temperature

Wang et al. 2024
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THMv2-TEMP: Development of a Temperature Dependent THMv2

Database

* THMv2 will be expanded to include temperature-

dependent single-scattering properties for FIR wavelengths

(14 — 200pm).

* 6 temperatures will be considered ranging from 170 —
270K.

* Since only FIR wavelengths is primary focus, no Physical
Geometric Optics Method (PGOM) calculations will be
performed due to lack of backscattering.

* Temperature-dependent complex refractive index data to
be used for development from Wang et al. 2020.

THMv2-TEMP Computation Methods
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Preliminary Single-Scattering

Property Comparisons: 14.00um
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Preliminary Single-Scattering

Property Comparisons: 26.00um
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Summary and Future Work

For GOES-16/17 retrieval analyses:

o VIS-NIR Method: SZA affects COT retrieval certainty (larger SZA = larger uncertainty).

o TIR Method: VZA affects COT retrieval magnitude (larger VZA = larger COT retrievals).

o Cloud inhomogeneity from averaging VIS reflectance pixels decrease GOES-16 and -17 COT retrieval consistency.

MODIS Nakajima-King retrieval LUTs

o THMv3 effective radius isolines compress for smaller effective radii than THMv2.
o Difference could be due to using difference habit fraction mixture/distorted particle shapes.

Minimal difference in TIR split-window LUT due to scattering becoming less important.
Preliminary THMv2-TEMP single-scattering property calculations show noticeable difference
across the 170-270K temperature range.

Spectral consistency tests will soon be performed for MODIS and VIIRS instruments.
o CALIOP and IIR active-passive consistency will also be performed.
o THMv2 habit fraction mixing ratios will probably be altered to further improve spectral consistency if needed.

Plans to compare broadband flux RTM calculations utilizing THM, THMv2, and other
conventional ice particle single-scattering databases against CERES observations.

Development of the complete THMv2-TEMP database likely will be complete by end of year.
o IGOM calculations already complete but need to be reviewed.
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