# An update of OLR trend in the last two decades: what do CERES, AIRS, and CrIS tell us all together

Xianglei Huang<sup>1</sup>, Xiuhong Chen<sup>1</sup>, Norman Loeb<sup>2</sup>, Seiji Kato<sup>2</sup>, Qing Yue<sup>3</sup>, Eric Fetzer<sup>3</sup>, Qing Liang<sup>4</sup>, Luke Oman<sup>4</sup>, Stephen D. Steenrod<sup>4</sup>

1. University of Michigan 2. NASA Langley Research Center 3. JPL/Caltech 4. NASA GSFC

CERES Spring 2024 Science Team Meeting May 15, 2024



Acknowledgements: CERES project

- We have had concurrent broadband and spectrally resolved measurements
  - CERES and AIRS on Aqua since Sep 2002
  - CERES and CrIS on S-NPP and JPSS1/2 since Feb 2012
- We also have had T & q well assimilated into ERA5 and MERRA-2 reanalyses
- We also have had cloud observations better than before
- Ozone monitoring and "nudged" simulations are also well-developed
- Other well-mixed GHGs are routinely monitored by NOAA

"Do we have a consistent picture from these observations-based datasets regarding the longwave radiative forcings and feedbacks in the last two decades?"

Some work presented here is still working-in-progress. Please do not cite.



## Datasets (Jan 2003 - Dec 2022)

- CERES EBAF 4.2 AIRS L3 Spectral OLR product
  - 10cm<sup>-1</sup> spectral flux derived from collocated AIRS and CERES measurements
- MODIS monthly-mean cloud state joint histograms
  - Derived from Eric Fetzer's MEASURES project
- ECMWF ERA5 reanalysis temperature and humidity profiles
- $CO_2/CH_4/N_2O$  from NOAA GML
- $O_3$  from the NASA GEOS with the full chemistry version (GEOSCCM) with nudged meteorology
  - ~100km horizontal resolution, 72 vertical levels



#### Global-mean OLR time series as inferred from CERES EBAF OLR and AIRS spectral OLR

Trends and uncertainties using Weatherhead's formula (1998, JGR)

Monthly-mean

Annual-mean



EBAF: 24-hour average AIRS: equally weighted average of ascending and descending Aqua observations



## What could be the reason(s) for the discrepancies, 0.26±0.15 vs. 0.13±0.13 Wm<sup>-2</sup>/decade?

### 1. Sampling difference

Check the long-term trend of collocated CERES-Aqua obs (prior to Feb 2022) vs. that of EBAF 4.2, no difference in linear trend

- 2. Uncertainty in inverting spectral radiance to spectral flux
  - (1) Spectral ADM
  - (2) Extrapolation from mid-IR AIRS to far-IR region
- 3. Calibration/stability
  - Much more difficult to assess
  - Known issues and unknown issues

### Secular drift of the AIRS SRF centroid: more stabilized after 2010



#### CrIS NEdT vs AIRS and IASI at native instrument resolution (T=270K)

In thermal IR, CrIS has smaller noise levels than both AIRS and IASI



Zavyalov et al, https://cimss.ssec.wisc.edu/itwg/itsc/itsc18/program/files/links/1.07\_Zavyalov\_po.pdf

Givens the AIRS and CrIS instrument performances, could we see sth different if we only use CrIS-era data?



### **Issues with CrIS**

- 1. CrIS on S-NPP have issues in their mid-IR channels after 2021
- 2. CrIS on S-NPP and CrIS on JPSS-1 have differences

Our solutions: use CrIS on JPSS-1 after 2020 and CrIS on S-NPP before 2020; and make adjustments based on the overlapped measurements in 2020

### Overlapped results in 2020 (global average)



### Spectral OLR from AIRS and CrIS: Feb 2012 to Jan 2023



Trends from monthly-mean time series are calculated using trend\_weatherhead.m Trend ± 95% confidence interval is shown

|                                     | $\frac{dF}{dt}$ from<br>EBAF4.2<br>(Wm <sup>-2</sup> /yr) | <pre> dF dt from CrIS (Wm<sup>-2</sup>/yr) </pre> | <pre> dF dt from AIRS (Wm<sup>-2</sup>/yr) </pre> | $\frac{d}{dt}[-RF] \\ + [-\lambda] \frac{dT_{surface}}{dt}$ |        | -λ<br>(Wm <sup>-2</sup> /K) | $rac{dT_{surface}}{dt}$ (K/yr) |
|-------------------------------------|-----------------------------------------------------------|---------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------|--------|-----------------------------|---------------------------------|
| 201202 to<br>202201,<br>global-mean | 0.059±0.039                                               | 0.055±0.034                                       | 0.055±0.034                                       | 0.069                                                       | -0.021 | 2.699                       | 0.034                           |







90°S 🕁

-1

E

-0.5

0

<sup>90°</sup> E 135° E180° E225° E270° E315° E360° E 0.5 1 Wm<sup>-2</sup>/yr





Upward positive (opposite to convention of feedback analysis)



# Conclusions and reflections

- We have enough data now to start to
  - looking the spectral dimension of the longwave radiative forcing and feedback from observations
  - painting the whole picture from concerted observations
- The agreements among CERES, AIRS, and CrIS are encouraging. Meanwhile
  - Interannual variability is not small
  - Continuity is the key as the secular signal starts to stand out of the internal fluctuation: gaps in observations will be a showstopper
- The synergy of multiple and complementary observations for future climate observing system
- So far the spectral OLR depends on extrapolation from the mid-IR to far-IR, and



#### The last time we have global far-IR spectral measurements from space was Jan 1971...





Rudy Hanel (1922-2015)





(NASA Pre-launch press conference at 3pm today)

## Thank You!



#### Total feedback\*Ts trend+forcing=0.035





Feedback is computed using grid-by-grid Ts



Trend of OLR (AIRS – EBAF4.2) mean=-0.012Wm<sup>-2</sup>/yr

90<sup>°</sup> N

70<sup>°</sup> N

50<sup>°</sup> N

30<sup>°</sup> N

10<sup>°</sup> N

10<sup>°</sup> S

30<sup>°</sup> S

50<sup>°</sup> S

70<sup>°</sup> S

90<sup>°</sup> S

-0.4

90

-0.2

F135

F180

0

Trend of OLR (CrIS– EBAF4.2) mean=-0.013Wm<sup>-2</sup>/yr



#### All-sky

2012Feb-2023Jan (11years)

For CrIS flux, it is derived from Suo-NPP over 2012-2018 and JPSS-1 over 2019-2023

#### OLR difference (AIRS L1C – AIRS L1B) and the trend of the flux difference







Global-mean



For CrIS flux, it is derived from Suo-NPP over 2012-2018 and JPSS-1 over 2019-2022



## https://www.dropbox.com/s/k07jeqmmugw4bng/Screenshot%202023-05-04%20at%2012.19.49%20AM.png?dl=0



| 833             |               |                |                                |                                |
|-----------------|---------------|----------------|--------------------------------|--------------------------------|
|                 | Global Mean   | Tropical Mean  | N. Hemisphere<br>Extra-tropics | S. Hemisphere<br>Extra-tropics |
| AIRS 1:30 PM    | 0.0024±0.0189 | -0.0163±0.0361 | 0.0432±0.0406                  | -0.0008±0.0257                 |
| AIRS 1:30 AM    | 0.0110±0.0163 | -0.0029±0.0312 | 0.0510±0.0343                  | -0.0012±0.0261                 |
| AIRS 1:30 AM/PM | 0.0064±0.0174 | -0.0100±0.0335 | 0.0469±0.0370                  | -0.0013±0.0256                 |
| CERES           | 0.0112±0.0179 | -0.0063±0.0345 | 0.0554±0.0366                  | 0.0020±0.0259                  |

Joel Susskind, Jae Lee, and Lena Iredell

Clear Sky OLR agrees better with AIRS than with CERES, but also has a small negative drift.