ENSO Radiative Feedbacks and their Possibility as an Emergent Constraint

By: Tyler Hanke, University of Illinois at Urbana-Champaign

Collaborators: Cristian Proistosescu, University of Illinois at Urbana-Champaign
Aaron Donohoe, University of Washington
Malte Stuecker, University of Hawai‘i at Mānoa
Ryan C Scott, National Aeronautics and Space Administration
The Pattern Effect

\[ECS = -\frac{F_{2x}}{\lambda} \]

\[(\lambda_{eq}) \]

\textbf{abrupt-4xCO2}

\[\text{Surface T} \]

\[\text{Equilibrium} \]

\[\text{Historical (1870)} \]

\[\text{Difference} \]
Emergent constraint:

physically-explainable relationship between intermodel variations in some current *observable* climate quantity and future projections of it can be combined with an observational estimate to constrain the future projections.
ENSO – A Pattern Effect Analog?

CMIP6

* Pattern Effect: \(\Delta \lambda \) \([W/m^2/K]\)
* ENSO Feedback: \(\lambda_{ENSO} \) \([W/m^2/K]\)

All Sky \(r = 0.82 \)
Net CRE \(r = 0.93 \)
ENSO – A Pattern Effect Analog?

- **Introduction**
- **Results**
- **Summary**
- **Future Work**

Pattern Effect (Δλ) \[\text{W/m}^2/\text{K}\]

ENSO Feedback (λ_{ENSO}) \[\text{W/m}^2/\text{K}\]

- CMIP6
- Obs. ENSO
- Obs. Pattern Effect

![Graph showing the relationship between Pattern Effect and ENSO Feedback](image)

All Sky (r = 0.82)
Net CRE (r = 0.93)
ENSO – A Pattern Effect Analog?

\[\Delta \lambda = \text{Strong EP} \quad \Delta \lambda = \text{Strong CP} \quad \Delta \lambda = \text{Weak} \]

\[\lambda_{\text{ENSO}} = \text{Strong EP} \quad \lambda_{\text{ENSO}} = \text{Strong CP} \quad \lambda_{\text{ENSO}} = \text{Weak} \]

\[\lambda_{\text{CERES}} = \text{Strong EP} \quad \lambda_{\text{CERES}} = \text{Strong CP} \quad \lambda_{\text{CERES}} = \text{Weak} \]

Introduction · Results · Summary · Future Work
Observational Radiation Patterns

EP and CP ENSO SSTs

Introduction · Results · Summary · Future Work
Observational Radiation Patterns

- All-Sky ENSO pattern dominated by net cloud.
- Low cloud CRE contributes most in tropical and midlatitude EP.
- High cloud CRE contributes most near warm pool and equatorial CP.
- Clear-Sky largely only modulates cloud response.

EP and CP ENSO SSTs

Cloud Controlling Factors (CCFs)

Introduction • Results • Summary • Future Work
Observational Radiation Patterns

EP and CP
ENSO SSTs

Cloud Controlling Factors (CCFs)

Introduction · Results · Summary · Future Work
Observational Radiation Patterns

Introduction

Results

Summary

Future Work

Ceppi & Fueglistaler (2021)
Observational Radiation Patterns

Introduction
- Results
- Summary
- Future Work

Lapse Rate

W/m²/°

Lag (month)

EP ENSO

CP ENSO

WV (LW)
Summary

• ENSO is a potential emergent constraint on the pattern effect
 • ENSO feedbacks have strong linear relationships with pattern effects in 8 CMIP6 models
 • Model pattern effects appear to have similar spatial diversity as their ENSO feedbacks (CP vs EP)

• Low cloud radiative feedbacks drive the spatial pattern and evolution of ENSO TOA variability
 • Low cloud feedbacks evolve in-phase with EP ENSO SST patterns but out-of-phase with CP ENSO SST patterns
 • Driven by atmospheric destabilization for EP patterns, but changes in atmospheric stability, SSTs, and warm air advection contribute to CP patterns

• Clear-sky radiation helps modulate low cloud feedbacks following peak CP ENSO SST anomalies
 • The clear-sky feedback evolution in both modes is driven by a balance between water vapor and lapse-rate feedbacks, with lapse-rate “winning out” for CP patterns
Future Work

• Fully understand the physics and dynamics linking ENSO feedbacks to the pattern effect
 • Will need more models running amip-piForcing simulations
 • CERES-MIP to partition model cloud radiative fluxes into low/high clouds, include larger period of record
 • Maybe use ERBE to extend CERES backward to include more ENSO events in observational study?

• Evaluate the impacts for ECS
Thank You!
Questions?