Overview of the BroadBand Radiometer (BBR) instrument on EarthCARE, its products and plans for the commissioning

Nicolas Clerbaux, Almudena Velazquez Blazquez, Edward Baudrez - Royal Meteorological Institute of Belgium

Carlos Domenech, Raquel G. Marañon, Carla Salas Molar – GMV Spain

Nils Madenach – Freie Universität Berlin

EarthCARE mission overview
The Broadband radiometer (BBR) instrument
The BBR products (Level 1, Level 2)
EarthCARE commissioning plans
 • Instrument Commissioning Team (ICT)
 • EarthCARE Validation Teams
Project BRAVO
Summary
The scientific objectives of the mission are:

- To observe vertical profiles of natural and anthropogenic aerosols on a global scale, their radiative properties and interaction with clouds
- To observe vertical distributions of atmospheric liquid water and ice on a global scale, their transport by clouds and their radiative impact
- To observe cloud distribution, cloud-precipitation interactions and the characteristics of vertical motions within clouds
- To retrieve profiles of atmospheric radiative heating and cooling through the combination of the retrieved aerosol and cloud properties

Payload:

- The Atmospheric Lidar (ATLID, 355nm) provides vertical profiles of aerosols and thin clouds. It has a high-spectral resolution receiver and depolarisation channel.
- The Cloud Profiling Radar (CPR, 94GHz) provides vertical profiles measurements of clouds and has the capability to observe vertical velocities of cloud particles through Doppler measurements.
- The Multi-Spectral Imager (MSI) provides across-track information on clouds and aerosols with channels in the visible, near infrared, shortwave- and thermal infrared.
- The Broad-Band Radiometer (BBR) provides measurements of top-of-the-atmosphere radiances and fluxes. It has three fixed viewing directions pointing in fore/nadir/aft directions.
EarthCARE – Production model (ESA part!)
EarthCARE – Status

- Instruments and satellite ready for launch
- Reference orbit fully defined -> Longitude of the Ascending Node Crossing (ANC) of 0.6° East.
- Consolidation of the L1 and L2 processors (v11)
- Full chaining of the processors using EarthCARE end-to-end simulations (E3SIM)
- Documentation via a special issue in Atmospheric Measurement Techniques (AMT): EarthCARE Level 2 algorithms and data products (open access)
- Commissioning rehearsal exercise performed
- Communication material ready (video, …)
- Launch planned on 28th May 22:20 UTC (to be confirmed some days before)
The BBR instrument - Geometry

- Along track sampling with 3 telescopes: nadir, fore and aft (@55° VZA at surface)
- Array of 30 x 1 detectors
- Across track sampling: 600m (nadir), 1000m (fore, aft)
- Swath: 18km (nadir), 30km (fore, aft)
- Along track sampling: 0.8 km (1.05km at 75% CDM speed)

Figure 1.3: Viewing geometry
The BBR instrument – Telescope detail and assembly

- Detectors: 30 x 1 Vanadium Oxide microbolometer array
- Single mirror optics (Aluminium coating)
- Two spectral channels: TW (0.2 – 50 µm) & SW (0.2 – 4 µm)

Radiometric accuracy:
- SW: 2.5 W/m²/sr
- LW: 1.5 W/m²/sr
The BBR instrument - Chopper and Calibration Drums

Figure 1-4: Chopper and chopper operation

Figure 1-6: Calibration Drum Layout.
The BBR integration domains

<table>
<thead>
<tr>
<th>Level 1 PSF</th>
<th>Size (across x along track)</th>
<th>Ref.</th>
<th>Level 2 unfiltered rad</th>
<th>Level 2 fluxes</th>
<th>Level 2 combined flux</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>10x10km</td>
<td>BBR</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Small</td>
<td>5x10km</td>
<td>BBR</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Full</td>
<td>18x10km 30x10km</td>
<td>BBR</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Assessment Domain</td>
<td>5x21 km</td>
<td>JSG</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>JSG</td>
<td>1x1 km</td>
<td>JSG</td>
<td>x</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes
- all regions sampled @ 1km
- all dimensions are configurable

Not yet implemented
The BBR products

- All products are NetCDF4 (HDF5) files
- In frame of 1/8 of orbit (~5000km)
- Level 1b products:
 - B-SNG: SW and TW for all the detectors
 - B-NOM: SW and LW after domain integration
- Level 2b products:
 - BM-RAD: Unfiltered radiances for the 3 views
 - BMA-FLX: Fluxes for the 3 views + combined flux
- Processors described in 2 AMT papers:
 - Velazquez Blazquez et al., 2024: Unfiltering of the EarthCARE Broadband Radiometer (BBR) observations: the BL-RAD product.
 - Velazquez Blazquez et al., 2024: Retrieval of top-of-atmosphere fluxes from combined EarthCARE lidar, imager and broadband radiometer observations: the BMA-FLX product. (in preparation)

Note: no similar development on JAXA side (they use the ESA L2 products).
Commissioning timeline and data release

<table>
<thead>
<tr>
<th>Data level</th>
<th>Target date(*) release to EarthCARE Cal/Val Team</th>
<th>Target date public release</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1</td>
<td>3 months after launch</td>
<td>6 months after launch</td>
</tr>
<tr>
<td>Level 2a and Level 2b two-sensor products</td>
<td>6 months after launch</td>
<td>9 months after launch</td>
</tr>
<tr>
<td>Level 2b three-sensor and four-sensor synergy products</td>
<td>9 months after launch</td>
<td>18 months after launch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Launch</th>
<th>May 2024</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preliminary Validation Results Workshop</td>
<td>Part 1, Part 2, Part 3</td>
</tr>
<tr>
<td></td>
<td>L+6M (online), L+9M (Europe), L+18M (Japan)</td>
</tr>
</tbody>
</table>

Commissioning Tools (Logistics):

- JIRA
- Confluence
- WebMUST
- Commissioning Server

Note: L1 and L2 products (from E3SIM) are already available on the commissioning server for format familiarisation and test of server access.
The BBR In Orbit Commissioning by ICT

- Done by the Instrument Commissioning Team (ICT): ESA, Industry, L2 scientists.

- The BBR commissioning is divided in 7 main phases:
 - PHASE 1 → BBR Switch-ON Activities
 - PHASE 2 → BBR In-orbit Health Status and Characterization
 - PHASE 3 → BBR In-orbit Health Status and Calibration
 - PHASE 4 → BBR Instrument and Level-1 In-Orbit Performance Analysis
 - PHASE 5 → Silent Configuration
 - PHASE 6 → AOCS Zero Doppler Check
 - PHASE 7 → Small Delta-V Check
Funding received for the BRAVO project (1FTE, 31 months)

Preparation (June – first L1 data) – based on simulated data

- Analysis of the occurrence of collocated/coangular observations with CERES and GERB instruments.
- Prepare CERES RAPS/PAPS data matching campaigns in collaboration with the CERES team
- Develop algorithms to enable BBR-like filtered and unfiltered broadband estimates from MSI (i.e. narrowband-to-broadband).
- Definition, selection and characterization of relevant Earth targets for calibration tracking and transfer (e.g. deep convective clouds, desert, ocean).
 - Develop/Select Deep Convection Reflectance model for the BBR sun-Earth-sat geometry
 - Implement ‘off line’ unfiltering for B-NOM and B-SNG
- Prepare tool for statistical comparison of the 3 views (e.g. histograms)
- Prepare tool for statistical comparison of the different detectors (e.g. histograms)
Commissioning (~Sept. - ~Dec) – based on L1 B-NOM and B-SNG data

- Visualization of actual BBR products over several orbits, with context given by the MSI (color composite).
- Statistical analysis of data from several orbits to highlight outliers, effect of observational conditions and differences between telescopes and pixels.
- Verification of B-NOM – B-SNG constancy (radiances, geolocation, flags,) : does a validation of one product applies to the other?
- Analysis/visualisation of ratio between BBR and MSI-based BBR-like data.
- Additional studies to address extreme and challenging conditions e.g. sun glint, high contrast changes during or close to the acquisition period.
- First evaluation of the SW/LW calibration using ‘off line’ unfiltering and DCC (SW) and GERB-1/3 data (SW/LW)
Summary

• EarthCARE ready for launch
• We are likely ahead of many problems, challenges, …
• BBR instrument and products designed mostly for the EarthCARE closure but could be of more general interest, e.g.;
 • possibility to integrate over any domains, e.g. for evaluation of ISCCP-NG radiative fluxes (0.05° x 0.05)
 • fine spatial resolution, e.g.: study the clear region around the clouds, contrails and aviation-induced cloudiness, …
• Preparation of the commissioning and data release
• EarthCARE is very complex / complete observation system:
 • current L2 products are ‘baseline’
 • likely improvements and new products as day-2.
Some videos about EarthCARE:

https://www.esa.int/ESA_Multimedia/Videos/2024/02/Coming_soon_EarthCARE

https://www.esa.int/ESA_Multimedia/Search?SearchText=EarthCARE&result_type=videos

https://www.esa.int/ESA_Multimedia/Search?SearchText=EarthCARE&result_type=videos