Radiative buffering of extratropical forcing and feedback

Daniel McCoy¹, <u>Ci Song¹, Geethma Werapitiya¹</u>, Andrew Gettelman², Trude Eidhammer³, Gregory Elsaesser^{4,5}, Isabel McCoy^{6,7}, Duncan Watson-Parris⁸, Casey Wall⁹, Chuyan Tan^{1,9}

¹University of Wyoming, ²PNNL, ³NCAR, ⁴Columbia, ⁵NASA-GISS, ⁶NOAA, ⁷CIRES, ⁸UC San Diego, ⁹University of Oslo, ¹⁰Hunan Climate Center

Clouds dominate uncertainty in climate forcing and feedback

Zelinka, Mark D., Timothy A. Myers, Daniel T. McCoy, Stephen Po-Chedley, Peter M. Caldwell, Paulo Ceppi, Stephen A. Klein, and Karl E. Taylor. "Causes of Higher Climate Sensitivity in CMIP6 Models." *Geophysical Research Letters* n/a, no. n/a (January 3, 2020). https://doi.org/10.1029/2019GL085782.

Watson-Parris, D., and C. J. Smith, 2022: Large uncertainty in future warming due to aerosol forcing. *Nature Climate Change*, https://doi.org/10.1038/s41558-022-01516-0.

ERF_{aer} (W m⁻²)

Motivation

SW Cloud feedback on warming

IPCC AR5 report (Chapter 7, Fig. 11)

Historical forcing from aerosol-cloud interactions (aci) Effective radiative forcing from aci (ERFaci)

Carslaw, Ken S. "Chapter 2 - Aerosol in the Climate System." In *Aerosols and Climate*, edited by Ken S. Carslaw, 9–52. Elsevier, 2022. <u>https://doi.org/10.1016/B978-0-12-819766-0.00008-0</u>.

Substantial uncertainty relate to extratropical clouds

Zelinka, Mark D., Timothy A. Myers, Daniel T. McCoy, Stephen Po-Chedley, Peter M. Caldwell, Paulo Ceppi, Stephen A. Klein, and Karl E. Taylor. "Causes of Higher Climate Sensitivity in CMIP6 Models." *Geophysical Research Letters* n/a, no. n/a (January 3, 2020). <u>https://doi.org/10.1029/2019GL085782</u>.

Substantial uncertainty relate to extratropical clouds

ERFaci across 10 ESMs in CMIP6

Zelinka, M. D., C. J. Smith, Y. Qin, and K. E. Taylor. "Aerosol Effective Radiative Forcings in CMIP Models." *EGUsphere* 2023 (April 25, 2023): 1–24. <u>https://doi.org/10.5194/egusphere-2023-689</u>.

Wall, Casey J., Joel R. Norris, Anna Possner, Daniel T. McCoy, Isabel L. McCoy, and Nicholas J. Lutsko. "Assessing Effective Radiative Forcing from Aerosol–Cloud Interactions over the Global Ocean." *Proceedings of the National Academy of Sciences* 119, no. 46 (November 15, 2022): e2210481119. https://doi.org/10.1073/pnas.2210481119.

Substantial uncertainty relate to extratropical clouds

Commonality among extratropical cloud processes?

Zelinka, Mark D., Timothy A. Myers, Daniel T. McCoy, Stephen Po-Chedley, Peter M. Caldwell, Paulo Ceppi, Stephen A. Klein, and Karl E. Taylor. "Causes of Higher Climate Sensitivity in CMIP6 Models." *Geophysical Research Letters* n/a, no. n/a (January 3, 2020). <u>https://doi.org/10.1029/2019GL085782</u>.

Cancer ALWP between PI and PD in a perturbed parameter ensemble.

Causally-aware constraints on aerosol-cloud adjustments from surface observations Mikkelsen et al. 2024 (ACP, in prep)

Extratropics are a region of net moisture convergence

Extratropical moisture convergence (CMIP5+CMIP6)

McCoy, Daniel T., Michelle E. Frazer, Johannes Mülmenstädt, Ivy Tan, Christopher R. Terai, and Mark D. Zelinka. "Extratropical Cloud Feedbacks." In *Clouds and Their Climatic Impacts*, 133–57. Geophysical Monograph Series, 2023. https://doi.org/10.1002/9781119700357.ch6.

In this talk:

Buffering of aerosol-cloud adjustments by coupling between radiative susceptibility and precipitation efficiency Song et al. 2024 (GRL, in press)

Ci Song

"Aerosol-cloud adjustment forcing is buffered by competition between radiative susceptibility and precipitation efficiency across ESMs."

Geethma Werapitiya

"Extratropical SW cloud feedback is driven in by moisture convergence, but buffered by radiative susceptibility through precipitation efficiency."

In this talk:

Extratropical feedback, forcing, and radiative buffering processes 2024 (ACP, in prep)

Ci Song

Why a perturbed parameter ensemble (PPE)?

Why a perturbed parameter ensemble (PPE)?

- Parameterization:
 - How do we abstract a sub-gridscale process?
 - How do we choose parameter values?
- PPEs are a way to explore parametric space in a model here an ESM.

Gettelman CESM2 workshop Seifert

$$\dot{q_c} = a \cdot q_c^b \cdot N_d^c$$

Perturbed parameter ensemble (PPE)

• Imagine a model with a single parameterization:

 $\dot{q_c} = a \cdot q_c^b \cdot N^c$

https://www.cs.toronto.edu/~duvenaud/cookbook/

Perturbed parameter ensemble (PPE)

• Imagine a model with a single parameterization:

$$\dot{q_c} = a \cdot q_c^{\mathbf{b}} \cdot N^{\mathbf{c}}$$

https://www.cs.toronto.edu/~duvenaud/cookbook/

daniel.mccoy@uwyo.edu - www.mccoy.pt

Perturbed parameter ensemble (PPE)

- Real GCMs have many more than 2 parameters governing aci.
- To sample each dimension in Ndimensional parameter space with Psamples we need P^N simulations.

• Expensive!

Sampling parameter space

- Randomly sample and build an emulator.
- Typically Gaussian Process.
- Use Earth System Emulator (ESEm) https://github.com/duncanwp/ ESEm

Lee, L. A., K. S. Carslaw, K. J. Pringle, G. W. Mann, and D. V. Spracklen. "Emulation of a Complex Global Aerosol Model to Quantify Sensitivity to Uncertain Parameters." *Atmos. Chem. Phys.* 11, no. 23 (December 8, 2011): 12253–73. <u>https://doi.org/10.5194/acp-11-12253-2011</u>.

CAM6 PPE

- CAM6 run with fixed SST and ice.
- 45 parameters from clouds, convection, precipitation, aerosol, radiation are perturbed in 262 simulations.
- Sampled using latin hypercube.

Trude Eidhammer

Andrew Gettelman

CAM6 PPE

Scenario	Details	Use
Present Day PD	AMIP configuration, Present day emissions, nudged and free- running atmosphere	
Preindustrial Pl	As in PD, but with aerosol emissions set to PI	Calculate aerosol forcing
+4K SST	Cess-type experiment with SST increased by 4K. Free-running atmosphere	Calculate cloud feedback

Physics	Parameter Name	Description	Default	Min	Max	Units
Scheme						
CLUBB	clubb_C2rt	Damping on scalar variances	1.0	0.2	2	-
Boundary layer	clubb_C6rt	Low skewness in C6rt skewness function	4.0	2.0	6	-
	clubb_C6rtb	High skewness in C6rt skewness function	6.0	2.0	8	-
	clubb_C6thl	Low skewness in C6thl skewness function	4.0	2.0	6	-
	clubb_C6thlb	High skewness in C6thl skewness function	6.0	2.0	8	-
	clubb_C8	Coef. #1 in C8 skewness Equation	4.2	1.0	5	-
	clubb_beta	Set plume widths for theta_l and rt	2.4	1.6	2.5	-
	clubb_c1	Low Skewness in C1 Skw.	1.0	0.4	3	-
	clubb_c11	Low Skewness in C11 Skw	0.7	0.2	0.8	-
	clubb_c14	Constant for u' ² and v' ² terms	2.2	0.4	3	-
	clubb_c_K10	Momentum coefficient of Kh_zm	0.5	0.2	0.6	-
	clubb_gamma_coef	Low Skw.: gamma coef. Skw	0.308	0.25	0.35	-
	clubb_wpxp_L_thresh	Lscale threshold, damp C6 and C7	60	20	200	m
rophysics	micro mg accre enhan fact	Accretion enhancing factor	1.0	0.1	10.0	-
	micro_mg_autocon_fact	Autoconversion factor	0.01	0.005	0.2	-
	micro_mg_autocon_lwp_exp	KK2000 LWP exponent	2.47	2.10	3.30	-
	micro_mg_autocon_nd_exp	KK2000 autoconversion exponent	-1.1	-0.8	-2	-
	micro mg berg eff factor	Bergeron efficiency factor	1.0	0.1	1.0	-
	micro_mg_dcs	Autoconversion size threshold ice-snow	500e-06	50e-06	1.000e-06	m
	micro_mg_effi_factor	Scale effective radius for optics calculation	1.0	0.1	2.0	-
	micro_mg_homog_size	Homogeneous freezing ice particle size	25e-6	10e-6	200e-6	m
<u>.</u>	micro mg iaccr factor	Scaling ice/snow accretion	1.0	0.2	1.0	-
Σ	micro_mg_max_nicons	Maximum allowed ice number concentration	100e6	1e5	10000e6	# kg ⁻¹
	micro_mg_vtrmi_factor	Ice fall speed scaling	1.0	0.2	5.0	m s ⁻¹
Aerosol	microp_aero_npccn_scale	Scale activated liquid number	1	0.33	3	-
	microp_aero_wsub_min	Min subgrid velocity for liq activation	0.2	0	0.5	m s ⁻¹
	microp_aero_wsub_scale	Subgrid velocity for liquid activation scaling	1	0.1	5	-
ů.	microp_aero_wsubi_min	Min subgrid velocity for ice activation	0.001	0	0.2	m s ⁻¹
õ	microp_aero_wsubi_scale	Subgrid velocity for ice activation scaling	1	0.1	5	-
Ľ	dust_emis_fact	Dust emission scaling factor	0.7	0.1	1.0	-
Ael	seasalt_emis_scale	Seasalt emission scaling factor	1.0	0.5	2.5	-
	sol_factb_interstitial	Below cloud scavenging of interstitial modal aerosols	0.1	0.1	1	-
	sol_factic_interstitial	In-cloud scavenging of interstitial modal aerosols	0.4	0.1	1	-
ZM	cldfrc_dp1	Parameter for deep convection cloud fraction	0.1	0.05	0.25	-
nvection	cldfrc_dp2	Parameter for deep convection cloud fraction	500	100	1.000	-
	zmconv_c0_lnd	Convective autoconversion over land	0.0075	0.002	0.1	m^{-1}
	zmconv_c0_ocn	Convective autoconversion over ocean	0.03	0.02	0.1	m^{-1}
	zmconv_capelmt	Triggering threshold for ZM convection	70	35	350	J kg ⁻¹
	zmconv_dmpdz	Entrainment parameter	-1.0e-3	-2.0e-3	-2.0e-4	m ⁻¹
	zmconv_ke	Convective evaporation efficiency	5.0e-6	1.0e-6	1.0e-5	$(\text{kg m}^{-2} \text{ s}^{-1})^{0.5} \text{ s}^{-1}$
	zmconv_ke_Ind	Convective evaporation efficiency over land	1.0e-5	1.0e-6	1.0e-5	$(\text{kg m}^{-2} \text{ s}^{-1})^{0.5} \text{ s}^{-1}$
	zmconv_momcd	Efficiency of pressure term in ZM downdraft CMT	0.7	0	1	
	mconv_momcu	Efficiency of pressure term in ZM updraft CMT	0.7	0	1	-
Ö	zmconv_num_cin	Allowed number of negative buoyancy crossings	1	1	5	-
\mathbf{O}	zmconv tiedke add	Convective parcel temperature perturbation	0.5	0	2	К

CAM6 PPE

• Eidhammer, T., A. Gettelman, K. Thayer-Calder, D. Watson-Parris, G. Elsaesser, H. Morrison, M. van Lier-Walqui, C. Song, and D. McCoy. "An Extensible Perturbed Parameter Ensemble (PPE) for the Community Atmosphere Model Version 6." EGUsphere 2024 (January 15, 2024): 1–27. https://doi.org/10.5194/egusphe re-2023-2165.

Trude Eidhammer

Andrew Gettelman

Aerosol-cloud interactions

Extratropical feedback, forcing, and radiative buffering processes 2024 (ACP, in prep)

Geethma Werapitiya

Ci Song

Constraints on ERFaci

• The effective radiative forcing due to aerosol-cloud interactions (ERFaci) can be linearized as: $\frac{dR}{dlnN_d} \approx \frac{\partial R}{\partial lnN_d} \Big|_{CC} + \frac{\partial R}{\partial C} \frac{dC}{dlnN_d} + \frac{\partial R}{\partial \mathcal{L}} \frac{d\mathcal{L}}{dlnN_d}$

Carslaw, Ken S. "Chapter 2 - Aerosol in the Climate System." In *Aerosols and Climate*, edited by Ken S. Carslaw, 9–52. Elsevier, 2022. <u>https://doi.org/10.1016/B978-0-12-819766-0.00008-0</u>.

Constraints on ERFaci

Sensitivity of cloud fraction and in cloud liquid water path to Nd

$$\frac{dR}{dlnN_d} \approx \frac{\partial R}{\partial lnN_d} \bigg|_{\mathcal{L},C} + \frac{\partial R}{\partial C} \frac{dC}{dlnN_d} + \frac{\partial R}{\partial \mathcal{L}} \frac{d\mathcal{L}}{dlnN_d}$$

Radiative forcing Aerosol-cloud adjustments

Cloud macrophysical properties

Optical depth

- In this talk we use microwave radiometer liquid water path (LWP).
- Not in-cloud.
- Not as sensitive to broken cloud.
- Doesn't care about multilayer and ice-topped cloud.

Liquid Ice Uncertain Mixed

Cloud macrophysical properties

- MAC-LWP product.
- Even sampling through diurnal cycle.
- Use in extratropics minimizes rain/cloud partitioning issues.

LWP Ratio (Cloud / Total)

250 199

- 158

125

- 100

79

63

- 50

- 40

- 31

1.00

0.95

0.90

0.85

0.80

0.75

- 0.70

- 0.60

Elsaesser, G. S., Christopher W. O'Dell, Matthew D. Lebsock, Ralf Bennartz, Thomas J. Greenwald, and Frank J. Wentz. "The Multi-Sensor Advanced Climatology of Liquid Water Path (MAC-LWP)." Journal of Climate 0, no. 0 (2017): null. https://doi.org/10.1175/jcli -d-16-0902.1.

Precipitation efficiency controls extratropical LWP Extratropical LWP vs. precipitation

- Mean state LWP scales very strongly with precipitation efficiency.
- Precipitation efficiency should be important for aerosol cloud adjustments too!

Extratropical LWP vs. precipitation efficiency across PPE members

Aerosol-cloud adjustments

- Mean-state LWP tells us about precipitation efficiency.
- Assume condensation same in PI and PD.
- Condensation balanced by precipitation sink
- Solve

$$\dot{q_c} = a \cdot q_{c PD}^b \cdot N_{PD}^c = a \cdot q_{c PI}^b \cdot N_{PI}^c$$

• For change in liquid water content.

Algebra based on autoconversion scheme (Khairoutdinov and Kogan 2000)

Aerosol-cloud adjustments

- PPE also produces a positive correlation between PD LWP and PI->PD ΔLWP.
- More spread. More than one parameterization moderating precipitation efficiency being perturbed.

ERFaci constraint

• Does our constraint on ΔLWP constrain ERFaci?

• No constraint on ERFaci!

Constraints on ERFaci

Radiative susceptibility to changes in cloudiness

$$\frac{dR}{dlnN_d} \approx \frac{\partial R}{\partial lnN_d} \Big|_{\mathcal{L},C} = \frac{\partial R}{\partial C} \frac{dC}{dlnN_d} = \frac{\partial R}{\partial \mathcal{L}} \frac{d\mathcal{L}}{dlnN_d}$$

Radiative forcing Aerosol-cloud adjustments

- How does albedo scale with microwave LWP?
- Albedo calculated from CERES EBAF Ed4.1
- High clear-sky albedo (>0.12) is removed.

 Albedo calculation is repeated for every PPE member.

Radiative buffering

Radiative buffering through adjustments

Cloud feedback

Extratropical feedback, forcing, and radiative buffering processes 2024 (ACP, in prep)

Ci Song

Extratropical moisture convergence and cloud (CMIP5+CMIP6)

McCoy, Daniel T., Michelle E. Frazer, Johannes Mülmenstädt, Ivy Tan, Christopher R. Terai, and Mark D. Zelinka. "Extratropical Cloud Feedbacks." In *Clouds and Their Climatic Impacts*, 133–57. Geophysical Monograph Series, 2023. https://doi.org/10.1002/9781119700357.ch6.

ccoy.pt

Extratropical response to CO2 quadrupling

McCoy, Daniel T., Michelle E. Frazer, Johannes Mülmenstädt, Ivy Tan, Christopher R. Terai, and Mark D. Zelinka. "Extratropical Cloud Feedbacks." In *Clouds and Their Climatic Impacts*, 133–57. Geophysical Monograph Series, 2023. https://doi.org/10.1002/9781119700357.ch6.

Extratropical response to CO2 quadrupling

McCoy, Daniel T., Michelle E. Frazer, Johannes Mülmenstädt, Ivy Tan, Christopher R. Terai, and Mark D. Zelinka. "Extratropical Cloud Feedbacks." In *Clouds and Their Climatic Impacts*, 133–57. Geophysical Monograph Series, 2023. https://doi.org/10.1002/9781119700357.ch6.

Long term trend in Southern Ocean cloud

Norris, Joel R., Robert J. Allen, Amato T. Evan, Mark D. Zelinka, Christopher W. O'Dell, and Stephen A. Klein. "Evidence for Climate Change in the Satellite Cloud Record." *Nature* 536, no. 7614 (04/print 2016): 72–75. <u>https://doi.org/10.1038/nature18273</u>.

Manaster, A, Christopher W. O'Dell, and Gregory Elsaesser. "Evaluation of Cloud Liquid Water Path Trends Using a Multidecadal Record of Passive Microwave Observations." *Journal of Climate* 30, no. 15 (2017): 5871–84. https://doi.org/10.1175/jcli-d-16-0399.1.

Extratropical LWP trend

- Observed trend is dominated by moisture convergence.
- LWP trends in ESMs not strongly correlated with LWP trend!

Tan, Chuyan, Daniel T. McCoy, and Gregory S Elsaesser. "Constraints on Southern Ocean Shortwave Cloud Feedback from the Hydrological Cycle." Journal of Geophysical Research-Atmospheres (in Revision), 2024. https://doi.org/essoar.168286840.00256265.

Radiative impact buffered!

- Big range in LWP response to warming and mean state LWP over CMIP models.
- Shown at right, regional means over Southern Ocean.

Morphed composite: 2019-02-15 07:00:00 UTC

וווחחב

Moisture convergence driven cloud feedback

Climate Model Extratropical Cloud Feedback Constrained by Cloud Sources and Sinks in Cyclones Werapitiya et al. 2024 (JCLI, in prep)

WCB Moisture convergence

45

Funding: NASA-PMMST 80NSSC22K0609

Moisture convergence driven cloud feedback

WCB Moisture convergence

46

Funding: NASA-PMMST 80NSSC22K0609

Moisture convergence driven cloud feedback

• PPE members show approximately the same behavior as the simple heuristic model.

Extratropical cloud feedback

Radiative feedback

 Change in cloud properties scaled by albedo susceptibility is linear in cloud feedback.

CAM6 PPE shows links between forcing and feedback

The Interaction Between Climate Forcing and Feedbacks^{0.25} Gettelman A, Eidhammer T, Duffy ML, McCoy DT, Song C, Watson-Parris D JGR:A 2024 accepted, review Also: Gettelman, A., and S. C. Sherwood. "Processes Responsible for Cloud Feedback." *Current Climate Change Reports*, 2016, 1–11.

https://doi.org/10.1007/s40641-016-0052-8.

SW Cld Feedback

Climate Model Extratropical Cloud Feedback Constrained by Cloud Sources and Sinks in Cyclones Werapitiya et al. 2024 (JCLI, in prep)

Precipitation efficiency drives LWP response to aerosol and warming

Summary

Extratropical feedback, forcing, and radiative buffering processes 2024 (ACP, in prep)

Ci Song

Summary

- Extratropical LWP response to aerosol and warming is occurring in the context of moisture convergence.
- Bus driven by precipitation processes.
- Buffered by albedo susceptibility.
- Albedo susceptibility and LWP response linked.
- ERFaci SW cloud feedback correlation negative, LWP response correlation positive. Strong ERFaci buffering (Song et al. 2024).

Workshop in Laramie, WY October 28-30 – hope to see you there!

Origins of Climate Change Uncertainty

Image credit: Jeremy Young and Gabor Va

