Exploring the angular dimension of ERB with the Libera camera

Jake J. Gristey^{1,2,3}, K. Sebastian Schmidt^{3,4}, and the Libera Science Team

¹CIRES, CU Boulder ²NOAA CSL ³LASP, CU Boulder ⁴ATOC, CU Boulder

CERES Science Team Meeting: NASA GISS

- Libera camera characteristics
- Example application 1: Split-solar angular distribution model generation
- Example application 2: Testing of proposed alternate split-solar radiance-to-irradiance conversion
- Example application 3: Stereo cloud detection in challenging environments

- Libera camera characteristics
- Example application 1: Split-solar angular distribution model generation
- Example application 2: Testing of proposed alternate split-solar radiance-to-irradiance conversion
- Example application 3: Stereo cloud detection in challenging environments

Sampling Schematic

• 2048 × 2048 pixel array samples entire Earth disk subtended from the satellite

3

Gristey et al., AMT [2023]

19 October 2023

CERES Science Team Meeting: NASA GISS

Sampling Schematic

 2048 × 2048 pixel array samples entire Earth disk subtended from the satellite

3

• < 1km pixel spacing @ nadir

Gristey et al., AMT [2023]

19 October 2023

CERES Science Team Meeting: NASA GISS

Sampling Schematic

 2048 × 2048 pixel array samples entire Earth disk subtended from the satellite

3

- < 1km pixel spacing @ nadir
- horizon-to-horizon 124° field of view, (~6000 km @ surface)

Gristey et al., AMT [2023]

19 October 2023

CERES Science Team Meeting: NASA GISS

Sampling Schematic

 2048 × 2048 pixel array samples entire Earth disk subtended from the satellite

3

- < 1km pixel spacing @ nadir
- horizon-to-horizon 124° field of view, (~6000 km @ surface)
- Single spectral channel 555 nm (lowcost demonstration)

Gristey et al., AMT [2023]

Sampling Schematic

 2048 × 2048 pixel array samples entire Earth disk subtended from the satellite

3

- < 1km pixel spacing @ nadir
- horizon-to-horizon 124° field of view, (~6000 km @ surface)
- Single spectral channel 555 nm (lowcost demonstration)
- Photograph every 5 secs

Gristey et al., AMT [2023]

CERES Science Team Meeting: NASA GISS

Sampling Schematic

 2048 × 2048 pixel array samples entire Earth disk subtended from the satellite

3

- < 1km pixel spacing @ nadir</p>
- horizon-to-horizon 124° field of view, (~6000 km @ surface)
- Single spectral channel 555 nm (lowcost demonstration)
- Photograph every 5 secs
- 1.5% uniformity, 5% absolute accuracy

Gristey et al., AMT [2023]

CERES Science Team Meeting: NASA GISS

- Libera camera characteristics
- Example application 1: Split-solar angular distribution model generation
- Example application 2: Testing of proposed alternate split-solar radiance-to-irradiance conversion
- Example application 3: Stereo cloud detection in challenging environments

[•] Data rate limited

 Can typically only downlink small fraction of pixel array

Gristey et al., AMT [2023]

- Data rate limited
 - Can typically only downlink small fraction of pixel array
- Select "ADM samples": groups of pixels encompassing Libera point spread function (PSF)

Gristey et al., AMT [2023]

19 October 2023

- Data rate limited
 - Can typically only downlink small fraction of pixel array
- Select "ADM samples": groups of pixels encompassing Libera point spread function (PSF)

Gristey et al., AMT [2023]

19 October 2023

- Data rate limited
 - Can typically only downlink small fraction of pixel array
- Select "ADM samples": groups of pixels encompassing Libera point spread function (PSF)
- Randomization (or "systematic shift") within angular bins from one exposure to the next
 - > 39,609/4,194,304 pixels (0.94%)

Gristey et al., AMT [2023]

19 October 2023

CERES Science Team Meeting: NASA GISS

555 nm provides optimal proxy for split-solar

 CLARREO OSSE data (*Feldman et al., JGR [2011]*) suggests midvisible wavelength is optimal for Libera VIS sub-band

Gristey et al., AMT [2023]

Jake.J.Gristey@noaa.gov

5

CERES Science Team Meeting: NASA GISS

555 nm provides optimal proxy for split-solar

- CLARREO OSSE data (*Feldman et al., JGR [2011]*) suggests midvisible wavelength is optimal for Libera VIS sub-band
- Consistent with:
 - SCIAMACHY Gottwald and Bovensmann [2011]
 - SCIAMACHY-like simulations Gristey et al., J. Climate [2019]
 - ➢ AVIRIS Green et al., RSE [1998]
 - CERES unfiltering simulations Loeb et al., JAM [2001]

Gristey et al., AMT [2023]

5

CERES Science Team Meeting: NASA GISS

555 nm provides optimal proxy for split-solar

- CLARREO OSSE data (*Feldman et al., JGR [2011]*) suggests midvisible wavelength is optimal for Libera VIS sub-band
- Consistent with:
 - SCIAMACHY Gottwald and Bovensmann [2011]
 - SCIAMACHY-like simulations Gristey et al., J. Climate [2019]
 - > AVIRIS Green et al., RSE [1998]
 - CERES unfiltering simulations Loeb et al., JAM [2001]
- 555 nm has several operational advantages
 - Matches VIIRS M4 band (flat-fielding)
 - Less optical degradation

Gristey et al., AMT [2023]

2021-10-01 23:28 UTC

After 1 day of sampling...

NOAA-20 Retrieval: Minnis et al., IEEE [2021]

<u>Key</u>

• Night ADM sample

- Day ADM sample, outside VIIRS swath
- Day ADM sample, added to count

19 October 2023

CERES Science Team Meeting: NASA GISS

- Libera camera characteristics
- Example application 1: Split-solar angular distribution model generation
- Example application 2: Testing of proposed alternate split-solar radiance-to-irradiance conversion
- Example application 3: Stereo cloud detection in challenging environments

- Suggested by Norman Loeb and RBSP team:
 - 1. Pre-launch: Run radiative transfer for a variety of scenes to calculate multi-spectral and broadband radiances and irradiances, providing a "lookup table"

- Suggested by Norman Loeb and RBSP team:
 - 1. Pre-launch: Run radiative transfer for a variety of scenes to calculate multi-spectral and broadband radiances and irradiances, providing a "lookup table"
 - 2. Post-launch: For each Libera footprint, select a best-fit member in the lookup table using the observed VIIRS multi-spectral radiances and Libera broadband radiances

- Suggested by Norman Loeb and RBSP team:
 - 1. Pre-launch: Run radiative transfer for a variety of scenes to calculate multi-spectral and broadband radiances and irradiances, providing a "lookup table"
 - 2. Post-launch: For each Libera footprint, select a best-fit member in the lookup table using the observed VIIRS multi-spectral radiances and Libera broadband radiances
 - 3. From the selected lookup table member, take the VIS and NIR anisotropic factors to determine the partitioning of the total shortwave irradiance into VIS and NIR irradiance:

$$\frac{F_{VIS}}{F_{NIR}} = \frac{\pi I_{VIS}/R_{VIS}}{\pi I_{NIR}/R_{NIR}} = \left(\frac{I_{VIS}}{I_{NIR}}\right) \left(\frac{R_{NIR}}{R_{VIS}}\right)$$
observed retrieved

- Suggested by Norman Loeb and RBSP team:
 - 1. Pre-launch: Run radiative transfer for a variety of scenes to calculate multi-spectral and broadband radiances and irradiances, providing a "lookup table"
 - 2. Post-launch: For each Libera footprint, select a best-fit member in the lookup table using the observed VIIRS multi-spectral radiances and Libera broadband radiances
 - 3. From the selected lookup table member, take the VIS and NIR anisotropic factors to determine the partitioning of the total shortwave irradiance into VIS and NIR irradiance:

		observed	retrieved
$\overline{F_{NIR}}$	$\overline{\pi I_{NIR}/R_{NIR}}$	$-\left(\overline{I_{NIR}}\right)$	$\left(\overline{R_{VIS}}\right)$
F_{VIS}	$\pi I_{VIS}/R_{VIS}$	(I_{VIS})	$\left(R_{NIR}\right)$

• One key concern: information about the split-solar angular distribution is entirely based on theory

- Suggested by Norman Loeb and RBSP team:
 - 1. Pre-launch: Run radiative transfer for a variety of scenes to calculate multi-spectral and broadband radiances and irradiances, providing a "lookup table"
 - 2. Post-launch: For each Libera footprint, select a best-fit member in the lookup table using the observed VIIRS multi-spectral radiances and Libera broadband radiances
 - 3. From the selected lookup table member, take the VIS and NIR anisotropic factors to determine the partitioning of the total shortwave irradiance into VIS and NIR irradiance:

F_{VIS}	$\pi I_{VIS}/R_{VIS}$	(I_{VIS})	$\left(R_{NIR}\right)$
$\overline{F_{NIR}}$	$-\frac{1}{\pi I_{NIR}/R_{NIR}}$	$-\left(\overline{I_{NIR}}\right)$	$\left(\overline{R_{VIS}}\right)$
		observed	retrieved

F : irradiance (or flux)I : radiance (or intensity)R : anisotropic factor

- One key concern: information about the split-solar angular distribution is entirely based on theory
 - > The Libera camera could provide a useful observational test here...

• Along track "stripe" - also downlinked

- Along track "stripe" also downlinked
- In the 16 minutes to pass through the camera WFOV, an exposure every 5 seconds provides <u>192 angular radiances</u>

CERES Science Team Meeting: NASA GISS

Jake.J.Gristey@noaa.gov

CERES Science Team Meeting: NASA GISS

- Libera camera characteristics
- Example application 1: Split-solar angular distribution model generation
- Example application 2: Testing of proposed alternate split-solar radiance-to-irradiance conversion
- Example application 3: Stereo cloud detection in challenging environments

Cross-track imagery provides scene context

- Cross-track and fwd "stripes" also downlinked
 - Provides scene context for radiometer footprint

Cross-track imagery provides scene context

- Cross-track and fwd "stripes" also downlinked
 - Provides scene context for radiometer footprint
- Camera cloud detection sometimes challenging (multispectral imagers too)
 - Cloud parallax: the apparent horizontal shift of a cloud relative to the surface with view-angle *e.g., Zhao & Di Girolamo, JAM [2004]*

CERES Science Team Meeting: NASA GISS

Jake.J.Gristey@noaa.gov

3D radiative transfer: EaR³T *Chen et al., AMT* [2023]

3D radiative transfer: EaR³T *Chen et al., AMT* [2023]

Monochromatic 555 nm image → R @ 30° fwd

Monochromatic 555 nm image → G @ nadir

19 October 2023

CERES Science Team Meeting: NASA GISS

Credit: K. S. Schmidt & K. Dong

10

Credit: K. S. Schmidt & K. Dong

Summary and conclusions

Simulation experiments show that the Libera camera can aid rapid VIS ADM development

Summary and conclusions

Simulation experiments show that the Libera camera can aid rapid VIS ADM development

"Hyper-angular" data could serve as a powerful observational test of an alternate radiance-to-irradiance approach

Summary and conclusions

555 nm

Reflectance

Simulation experiments show that the Libera camera can aid rapid VIS ADM development

"Hyper-angular" data could serve as a powerful observational test of an alternate radiance-to-irradiance approach

Stereo imagery shows promise for assisting cloud detection in challenging environments

Jake.J.Gristey@noaa.gov

Counts: SZA dependence

CERES Science Team Meeting: NASA GISS

Counts: Cloud optical depth dependence

CERES Science Team Meeting: NASA GISS

Spectral relationship vs. angle

CERES Science Team Meeting: NASA GISS

extra

Spectral relationship: SCIAMACHY/AVIRIS

extra

CERES Science Team Meeting: NASA GISS

Expanding beyond along-track

extra

Expanding beyond along-track

extra

Angular index as an additional dimension

Angular index: $\alpha = (fwd - bwd) / nadir$

extra

Reflectance (standard retrieval)

19 October 2023

CERES Science Team Meeting: NASA GISS

Example of cloud over frozen surface

Same cloud scene over a frozen surface

19 October 2023

CERES Science Team Meeting: NASA GISS