

Royal Meteorological Institute

Top-of-Atmosphere Radiative flux from MSG

William Moutier; Tom Akkermans and Nicolas Clerbaux

Royal Meteorological Institute

19th October 2023

Outline

- 1. Project Introduction
- 2. LW/SW approaches
- 3. Preliminary results
- 4. Conclusions & Outlook

CLAAS-4 TOA project

CM SAF project : Cloud property dAtAset using SEVIRI

Previous dataset : MVIRI/SEVIRI (Urbain et al., 2015) & SEVIRI/GERB (Clerbaux et al., 2015)

Preliminary processing chain

IRM

SW ADMs

CERES-TRMM (Tropical Rainfall Measuring Mission)

- 38°S-38°N with a resolution of ~10km
- Up to 592 scene types (from VIRS measurements)
- Discrete angular bins :
 - θ_0 : 9 angular bins (0° to 90° in 10° steps)
 - φ : 10 angular bins (0° to 180° in 10° or 20° steps)
 - Full range θ_0 of acquired every 46 days.
- Samples each grid box at all local time of days over a 46 days period

SW ADMs

CERES-Terra (Ed2b)

- 2 years of RAPS data from Terra satellite.
- 20km resolution / scene identification via MODIS.
- More scene types and Increase in angular bin resolution :
 - e.g., 2° in solar zenith, viewing zenith, and relative azimuth angles for cloud-free ocean scenes.
- Add mid-latitude and polar observations.

BUT over land :

- Does not provide observation of the angular radiation fields over the full range of θ_0 .
 - We can't use it due to the limited θ_0 range for each grid-box.

CERES-Terra (Edition 4; v2013-11-30)

5 years of RAPS data from the Terra satellite.

Segregated by :

- ┏ AOD in glint regions (3 classes).
- Both AOD (3 classes) and two aerosol types (rural and urban) in non-glint regions.
- Same method than CERES-Terra Ed2b to develop the ADM cloudy ocean.

SW ADMs

┏ Ed2b : Good opportunity to test the impact of AOD inputs from MERRA-2

Comparisons with CERES SSF TOA flux

CERES SSF SW TOA flux (Ed4.1)

VS.

TOA flux by applying local ADM implementations on radiance

No glint - Clear sky ocean

- Better result with Ed4 while using MERRA-2.
- Higher MAD with Aqua:
 - Not the last ADM version.
- MAD of 0 if the similar AOD case than Ed4 is used (no MERRA-2 anymore).

Validation Strategy

Characterize the products in terms of accuracy, precision and stability. 1 month of test data -> June 2011

Short-wave flux

Monthly mean diurnal cycle (FOV < 60° SZA < 84°) Monthly mean (from daily mean with minimum 27 days)

SW_{CERES SYN} relative bias

IRM

SW_{CERES SYN} relative bias

SW_{CERES SYN} relative uRMSD

SW_{CERES SYN} vs. CDRs

SW_{CERES SYN} vs. CDRs

Monthly bias with SW_{CERES-EBAF}

CM SAF CLAAS4 ed4 v8 vs. CERES EBAF bias 0.6 W m⁻² (0.7%) MAD 2.8W m⁻² (3.1%)

CLAAS4

- Improvement as compared to previous CM SAF versions at the border of the disk.
- Overestimation over land
 - Need to improve the NB to BB relation ?

Validation

Conclusions

Monthly bias with SW_{CERES-SYN}

CM SAF CLAAS4 ed4 v8 vs. CERES SYN bias 2.1 W m⁻² (2.4%) MAD 3.5W m⁻² (3.9%) bc-RMSD 4.5 W m⁻² (5.0%) bc-MAD 3.4 W m⁻² (3.8%) -----60° 30°N Latitude (°N) Bias (W m⁻²) -10 30% -20 60°5 -30 60°W 60°E Longitude (°E) MVIRI/SEVIRI vs. CERES SYN bias 2.2 W m⁻² (2.4%) MAD 3.5W m⁻² (3.9%) bc-RMSD 4.4 W m⁻² (4.9%) bc-MAD 2.9 W m⁻² (3.3%) 60°N 30°N Latitude (°N) Bias (W m⁻²) $^{-10}$ 30°5 -20 60°S -30 60°W 60°E Longitude (°E)

CLAAS4

- Same conclusions than for EBAF
- Larger overestimation as compared to CERES_{EBAF}

Validation

Monthly rbias with SW_{CERES-SYN}

CM SAF CLAAS4 ed4 v8 vs. CERES SYN bias 2.1 W m⁻² (2.4%) MAD 3.5W m⁻² (3.9%) bc-RMSD 4.5 W m⁻² (5.0%) bc-MAD 3.4 W m⁻² (3.8%) amy 60°N 10 30°N Latitude (°N) rBias (%) -5 30°5 -10 -15 60°S -20 60°W 60°E Longitude (°E) MVIRI/SEVIRI vs. CERES SYN bias 2.2 W m⁻² (2.4%) MAD 3.5W m⁻² (3.9%) bc-RMSD 4.4 W m⁻² (4.9%) bc-MAD 2.9 W m⁻² (3.3%) -20 m 60°N 15 30°N Latitude (°N) rBias (%) 0 -5 30°S -10 -15 60°5 -20 60°W 0° 60°E Longitude (°E)

IRM

Validation

Long-wave flux Monthly mean diurnal cycle Monthly mean

LW_{CERES SYN} MMDC

LW_{CERES SYN} vs. CDRs

IRM

Approaches

Validation

Conclusions

LW_{CERES SYN} vs. CDRs

Approaches

Validation

Monthly bias with LW_{CERES-EBAF}

CM SAF CLAAS4 ed4 v8vs. CERES EBAF bias -3.4 W m⁻² (-1.4%) MAD 3.6W m⁻² (1.4%) bc-RMSD 2.2 W m⁻² (0.9%) bc-MAD 1.5 W m⁻² (0.6%) 200 60°N 30°N Latitude (°N) Bias (W m⁻²) 30°S -10 -15 60°5 -20 60°W 60°E Longitude (°E) MVIRI/SEVIRI vs. CERES EBAF bias -6.1 W m $^{-2}$ (-2.4%) MAD 6.2W m $^{-2}$ (2.5%) bc-RMSD 3.7 W m⁻² (1.5%) bc-MAD 2.6 W m⁻² (1.1%) 60°N 30°N Latitude (°N) Bias (W m⁻²) 30°S -10 -15 60°5 -20 60°W 60°E Longitude (°E)

CLAAS4

Global UnderestimationLower impact of the VZA

Improvement as compared to previous CM SAF versions over water

Validation

24

 $\mathbf{R}\mathbf{N}$

Monthly bias with LW_{CERES-SYN}

CLAAS4

- Same trend than comparison with CERES_{EBAF}
- Lower global bias

Validation

IRM

Conclusions & Outlook

Conclusions

- Good agreements with CERES data :
 - ➡ Monthly Bias of -1.7 W m⁻² (LW) and 2.1 (SW) with CERES SYN.
 - Overestimation over land for the SW.
- Improvement as compared to previous CDR for the LW.
 - Better bias and no clear impact of the VZA anymore.

Future tasks

- Test with 2 years of data.
- New NB to BB relation will be tested.
- Test CERES-LW ADM
- Test for the CS with a time windows of 61 days.

Thank you for your attention

i i

111 I.I.I

....

₩.¥ ~ 1

1

STREET, STR.

1

izi m

3 A 62

NAME OF TAXABLE PARTY.

...

/11

1.7

4

Đ

ini

BALL NO.

Carling and

ADMI I

-

*** ···

KUA