

CERES Cloud Radiative Swath (CRS) Update

Seung-Hee Ham¹, Seiji Kato², Fred Rose¹, David Rutan³, Emily Monroe³, Norman Loeb², David Doelling², Pamela Mlynczak¹, Walter Miller¹, Paul Stackhouse², Ben Scarino², and W. L. Smith, Jr.²

> ¹Analytical Mechanics Associates (AMA), Hampton, Virginia ²NASA Langley Research Center, Hampton, Virginia ³Adnet Systems, Hampton, Virginia

Collaboration with:

SARB group: David Rutan, and Emily Monroe (Surface validation)

David Fillmore and Antonio Viudez-Mora (MATCH/CAM6 aerosol)

TISA Group: Joshua C. Wilkins, David Doelling and Pamela Mlynczak (TISA gridding for CRS1deg product)

Data Management: Walter Miller, Victor Sothcott, and Kathleen Dejwakh

ADM Group: Wenying Su (TOA fluxes)

Cloud group: Bill Smith Jr, Sunny Sun-Mack, and Ben Scarino (Cloud and skin temperature retrievals)

FLASHFLUX group: Paul Stackhouse (Parameterized surface fluxes in FLASHFLUX)

CRS Flux Algorithm

Inputs

CATM : CERES Atmospheric Transport Model produced by CERES SARB group

Terra or Aqua

TOA 70 hPa 200 hPa 500 hPa 850 hPa

Surface

MODIS pixel resolution (1 km)

CRS Version History

Released in May 2023 (Last CERES STM)	Ed2B (MOD C4 radiances)	Terra CERES-FM1 or FM2 Aqua CERES-FM3 or FM4	Mar 2000 – June July 2002 – May
	Ed2C (MOD C5 radiances)	Aqua CERES-FM3	May 2006 – De
	Ed4 (MOD C6 radiances)	Terra CERES-FM1 Aqua CERES-FM3	2018-2022 "5 ye 2018-2022
	Ongoing Development		
	Ed5 Alpha	Terra CERES-FM1 Aqua CERES-FM3	TBD

c 2007

ears"

Fu-Liou Model Inputs for CRS Flux Simulations

	Ed4 (Released in May 2023)	Ed5 (Ongoing D (Target release da
T(z)/q(z)/O ₃ (z) profiles & wind speed	MOA-GEOS-5.4.1 (1° grid)	MOA-GEOS-IT
Skin Temperature	 MODIS 11 µm-derived T_{skin} for clear skies GEOS-5.4.1 T_{skin} 	 MODIS 11 µm-derived T_{skin} by cloud detection algorithm GEOS-IT T_{skin}
Surface Albedo	 Parameterized albedo model from Jin (2004) MODIS BRDF Spectral albedo Surface albedo history (SAH) Ed4 map derived from clear-sky CERES measurements 	 Theoretical albedo model from . MODIS BRDF Spectral albedo Surface albedo history (SAH) E CERES measurements
Surface Emissivity	 CERES Emissivity for 11-12 µm bands Climatological emissivity based on IGBP 	 ADM Group-generated merged from far IR (Huang et al. 2016) al. 2013) emissivity models.
Cloud properties	MODIS clouds from Ed4 Cloud Algorithm	MODIS clouds from Ec
Aerosol Properties	 Ed4 Hourly CERES Atmospheric Transport Model (CATM) (Fillmore et al., 2022) MODIS C6 multi-channel aerosol optical depths 	 Ed5 Hourly CATM: MODIS/ aerosol scheme (Seiji's talk during CERES) MODIS C7 multi-channel area
RTM	Langley Fu-Liou model	Langley Fu-Li with updated correlated k g
	In Progress Algorithm being tested	

Development) ate: 2025-2026)

- (0.5° grid)
- for clear skies (Affected m change)
- Jin (2004)
- d5 map derived from clear-sky
- LW emissivity maps: Derived and IASI-derived LW (Zhou et
- d5 Cloud Algorithm
- VIIRS aerosol with CAM6
- STM) aerosol optical depths
- iou model gas absorption features
- Completed

Ongoing Improvement/Development for Ed5

- Switching GMAO reanalysis dataset from GEOS-5.4.1 to GEOS-IT for T(z) and q(z)
- A better surface emissivity map with more realistic far-IR emissivity values
- Inclusion of LW surface reflected component •
- Code interface for NetCDF ancillary datasets
- Minor code fix: Occasional failures of Fu-Liou Model runs when cloud layer was below \bullet the lowest model layer, MATCH AOT was stored in negative value when AOT > 3.27 during the data type conversion.
- New clouds, skin temperature, and aerosol properties are under development by Cloud and SARB groups, and these will be implemented in Ed5.

4

Issues in GEOS-5.4.1 (G541): Discontinuities in WV Time Series

GEOS-IT is running in three different streams: stream #1: 1998-2007 stream #2: 2008-2017 stream #3: 2018-present

Discontinuities were found in GEOS-5.4.1 WV anomaly time series, which was used for Ed4 CRS processing. **GEOS-IT WV time** series is more consistent with MERRA-2 and ERA-5, not showing any discontinuities. However, after 2020, it seems that MERRA-2, ERA-5, and GEOS-IT are starts to diverge.

Anomalies of Total Column Water Vapor

- \checkmark G541 is an outlier from other datasets.
- ✓ MERRA-2, ERA-5, and GEOS-IT are similar each other, and they also follow microwave (RMESS) observations.
- \checkmark Divergences across datasets appear after 2020, requiring further investigations.
- \checkmark Different WV anomaly time series in GEOS-IT will improve trend of computed fluxes.

Anomaly from 2008-2015 climatology GEOS-IT is missing in some periods 6-month running means

Consistent Temperature Anomalies Across Datasets

 Temperature anomalies from G541, MERRA-2, ERA-5, and GEOS-IT generally well agree.

Changes in Temperature Diurnal Cycle from GEOS-5.4.1 to GEOS-IT

- ✓ Diurnal skin temperature (T_s) range of GEOS-IT is generally smaller than that of GEOS-IT.
- ✓ Daytime GEOS-IT skin temperature is smaller than other datasets.
- ✓ The 2-m air temperature (T2M) shows similar differences as in T_s .
- ✓ Changes in T2M will impacts on computed LW surface downward fluxes.
- \checkmark Changes in Ts will impact on computed LW surface upward fluxes for overcast scenes.
- ✓ We found that improvement of polar region skin temperatures in GEOS-IT.

Comparison of Land Skin Temperature (LST) will be shown in Ben Scarino's Thursday talk

Skin temperature improvement in polar region will be discussed in David Rutan's Thursday talk

Updates of LW Surface Emissivity Model for Ed 5 CRS Flux Computations

Impact of Surface LW Emissivity Map

Δ (SFC Up LW Flux)

 Δ (TOA Up LW Flux)

LW Day Sim SFCUP (Mean: 0.15, RMSD: 1.23, #: 55042)

30 0 -30 -60 -90 -180 0.92

CERES, Technical Report

- Overall impact of the LW emissivity model on LW computations is small. Ο
- Surface LW upward changes by 0.15 W m⁻², and TOA LW surface upward changes up to 0.15 W m⁻². Ο

1st July 2019 Terra

New Emissivity (Jan)

Zachary A. Eitzen, Wenying Su, Lusheng Liang, and Sergio Sejas 2023: A New Emissivity Dataset for

9

Impact of Surface-Reflected Component in LW Computations

Δ (SFC Up LW Flux)

LW Day Sim SFCUP (Mean: 9.84, RMSD: 10.81, #: 55042)

Δ (TOA Up LW Flux)

LW Day Sim TOA (Mean: 0.53, RMSD: 0.73, #: 55042)

- was not included for LW 0

1st December 2019 Terra

```
• In Ed4 CRS computations,
   surface-reflected component
   computations. In Ed5, when
   the surface emissivity (\varepsilon_s) < 1
   (e.g., 0.95), surface reflectivity
   of 1 - \varepsilon_s(e.g., 0.05) will be
   included in the computations.
  By including LW surface
   reflected component, surface
   LW upward flux is increased by
   10 W m<sup>-2</sup>, and TOA LW upward
   flux is increased by 0.6 W m<sup>-2</sup>.
```

TOA Biases (Computed minus CERES-observed TOA Upward Fluxes)

TOA Flux Biases in CRS Ed4 (GEOS-5.4.1+Ed4 LW ε_s + No LW surface reflection)

LW Day Sim - Obs (Mean: -1.95, STD: 3.07, #: 58680)

LW Ngt Sim - Obs (Mean: -2.25, STD: 3.11, #: 58680)

LW Night

TOA Flux Biases in CRS Ed5-Alpha-Test (GEOS-IT + Ed5 LW ε_s + LW surface reflection)

LW Day Sim - Obs (Mean: -0.27, STD: 2.81, #: 58680)

LW Ngt Sim - Obs (Mean: -0.45, STD: 2.05, #: 58680)

- SW changes are small and so these are not included. ٠
- Computed LW fluxes using GEOS-IT are better agreed with CERES observations, compared to those using GEOS-5.4.1.
- More time-consistent LW biases when using GEOS-IT, compared to results using GEOS-5.4.1. ٠

All cases Jan2020

Changes in Computed Fluxes from Ed4 to Ed5-Alpha-Test (Switching GMAO) dataset, Surface Emissivity, and Including Surface LW reflection)

- SW changes are small so not included in this plot.
- Changes in TOA LW upward fluxes are mostly related to WV changes from GEOS-5.4.1 to GEOS-IT. Ο
- Changes in SFC LW upward fluxes are mainly caused by inclusion of surface-reflected component. Ο
- Changes in SFC LW downward fluxes are related to near-surface temperature changes. GEOS-IT daytime Ο land skin temperature is colder than GEOS-5.4.1 skin temperature.

January 2020, Terra

CRS Ed4 1deg-Hour Product (In Progress with TISA group)

- Ed4 CRS1deg-Hour will be available soon. •
- Level-3 hourly averaged gridded (1°) product of instantaneous computed and observed fluxes ۲
- CRS1deg product are aligned with SSF1deg product. Both products contain the same number of CERES footprints.
- The relationship between cloud/aerosol with radiative fluxes can be examined on a grid scale. •
- The L3 product can be more easily collocated with other satellite product (e.g., AIRS) and climate model • results.
- Note that CRS1deg-Hour product is derived from a certain local time (10:30AM for Terra and 1:30PM for • Aqua) and when comparing with other products, the time differences across datasets should be considered.

Summary

- Switching reanalysis dataset from GEOS-5.4.1 and GEOS-IT will impact on the trend of computed LW fluxes, mostly related to the different WV trends. Note that SYN Ed4 used GEOS-5.4.1 and EBAF Ed4 used MERRA-2.
- Daytime GEOS-IT skin temperatures are colder than GEOS-5.4.1, causing smaller LW surface downward fluxes when using GEOS-IT. The impact on LW surface upward fluxes will be relatively small since we use imager (MODIS)-derived skin temperature for Fu-Liou calculations, if available.
- The new LW emissivity model is slightly smaller than Ed4 emissivity for most regions. The impact of the new LW emissivity on TOA LW fluxes is around 0.15 W m⁻². The inclusion of this component will bring flux chages, up to 10 W m⁻² for TOA LW up and 0.6 W m⁻² surface LW up.
- Cloud and aerosol are main factors to determine in computing fluxes, and the impact of these parameters will be examined.

14

Thank you for your attention!

Please contact to <u>seung-hee.ham@nasa.gov</u> if you have any questions.

