Ice-Over-Water Cloud Properties in an Artificial Neural Network Approach

Sunny Sun-Mack¹, William L. Smith, Jr.², Patrick Minnis¹, Yan Chen¹, Gang Hong¹

(1) AMA, Hampton, VA, USA (2) NASA Langley Research Center, Hampton, VA

CERES Science Team Meeting October 17-19, 2023, NASA Goddard Institute for Space Studies 2880 Broadway New York, NY

Motivation

- radiation within the atmosphere
- retrieve the properties

 - MCAT deemed unreliable and not used, need a more reliable approach
- clouds
 - Most major cloud groups have or are attempting to include ML clouds in their retrievals.

• CERES has always had the goal of multilayer (ML) retrievals to improve quantification of the relationships between clouds and

• CERES Ed4 MODIS used Modified CO2 Absorption Technique (MCAT) to detect ML clouds (ice over water, primarily) and

• MCAT detection yields **negative** net gain in accuracy (NGA = true ML - false ML), although some true ML clouds detected Cloud top heights CTH from 2-layer MCAT clouds underestimated by 2.6 km for upper CTH and overestimated low CTH by 1.2 km (Viudez-Mora et al., 2015)

• International GEWEX Cloud Assessment Program recommends that cloud retrieval algorithms focus on the vertical structure of

(Stubenrauch et al., 2023 submitted) • Model for CERES is C3M analysis showing improvement when realistic cloud vertical profiles are used to adjust SARB input (Ham et al., JCAM, 2023)

Cloud-top/base Heights from Aqua MODIS Using a Neural Network Approach

• Same as ML detection method

• SL and ML trained separately with CALIPSO-CloudSat data (C3M)

- **Preliminary results:** daytime, snow-ice free surfaces
- Uses one year, 2008, of data sampled to accommodate computer memory
 - SL uses all low and midlevel pixels, and every third high pixel, then sample at 1/8 -> 2.55 M pixels
 - ML uses the same, but no secondary sampling -> 2.56 M pixels
 - Presented results use all matched pixels (~36 M pixels), no diminished high cloud sampling

• ML defined as ice-over-water cloud system, where ice-cloud base is separated from water cloud top by 1 km or more

• Input includes Lat, Lon, SZA, CODv, elev, BT37, BT85, BT11, BT12, 3 BTDs, T(z), RH(z). (with and without BT67)

Cloud Top Heights (CTH)

Single-Layer Cloud-Top Heights (CTH, SL), Daytime, Snow/Ice Free Surface, 2008

- NN almost removes overall bias
- NN nearly halves the standard deviation of the differences
- NN halves the mean absolute error

SL

- All quantities in km **Bias** = mean difference, Aqua - CC
- **SDD** = std dev of differences
- **MAE** = mean absolute error

Low: 0 < *CTH* <= 3 *km Mid:* 3 < CTH <= 6 km *CTH* > 6 *km* High:

Multi-Layer Upper Cloud Top Heights (CTH, ML), Daytime, Snow/Ice Free, 2008

- NN removes overall bias
- NN SDD ~ 1/3 of Ed4 SDD
- NN MAE < 1 km, $\sim 1/5$ of Ed4 MAE

ML

Multi-Layer Lower Cloud Top Heights, Daytime, Snow/Ice Free, 2008

- Almost no bias for NN
- NN SDD is as good as SL SDD and upper ML SDD
- NN MAE < 1 km, \sim 1/4 of Ed4 MAE

ML

ΔZ SDD Ed4 NN Ed4 NN Ed4 **Multilayer Lower Cloud**

All	2.81	-0.01	3.49	1.22	3.25	
Mid	2.27	-0.61	3.46	1.07	3.09	
_ow	3.25	0.54	3.46	0.84	3.39	

- Mean difference worse than SL Mid and Low
- SDD smaller than SL Mid and Low
- MAE greater than SL mid and low

Cloud Base Heights (CBH)

Single-Layer Cloud-Base Heights (CBH), Daytime, Snow/Ice Free, 2008

• Results very similar to SL CTH

SL

Multi-Layer Upper Cloud-Base Heights (CBH), Daytime, Snow/Ice Free, 2008

- Bias similar to ML CTH
- SDD & MAE worse slightly compared to ML CTH

ML

Examples of Cloud Height Distributions, Curtain Pictures

• The heights produced by the new methods, NN, provide a better characterization of cloud vertical structure than Ed4

Example of Cloud Height Distribution

• The heights produced by the new methods, NN, provide a better characterization of cloud vertical structure than Ed4

Zonal Distribution of CTH / CBH

Zonal Distribution of Single-Layer Cloud Top Heights over Snow Free Surfaces, Daytime, 2008

CTH, Ed4

Zonal Distribution of Single-Layer Cloud Base Heights over Snow Free Surfaces, Daytime, 2008

CBH, CC

SL

Zonal Distribution of both Upper & Lower Layer Cloud Top Heights over Snow Free Surfaces, Daytime, 2008

CTH, NN

CTH, Ed4

Zonal Distribution of Upper-Layer Cloud Base Heights over Snow Free Surfaces, Daytime, 2008

Multilayer Detection \rightarrow Precursor of SL / ML NN Cloud Height Retrieval

Multilayer Artificial Neural Network (MLANN) trained using Aqua MODIS and CALIPSO-CloudSat data from 2008 C3M

- Trained with 2008 data, validated with 2009 data; very robust
 - Correctly identifies ML and SL scenes together, 86 89% of the time
 - Detects more than half of ML clouds with ice separated > 1 km from the lower water cloud
 - Tends to miss ML more when upper cloud CODu < 0.3, or CODu > 5
 - As accurate or more accurate than any currently available method
 - Minimizes false detections, giving positive gains in accuracy
 - Full swath coverage enabled by application of VZA-dependent correction factors
- Can be enhanced by further logic using CTHs from NN and VISST
- Applicable now to VIIRS with fusion data
 - Accuracy diminishes some without 6.7 and 13.3 µm channels, would need retraining

Sun-Mack et al., 2023: Identification of ice-over-water multilayer clouds using an artificial network with multispectral satellite data, submitted to Atmos. Meas. Tech.

• Breaks scenes into eight categories: snow/ice-free, snow/ice-covered, day, night, VISST liquid, VISST ice clouds

Fractional Net Gain in Accuracy (NGA) in Cloud Layering Identification

- falseML fraction = ML pixels from NN that match SL pixels from CloudSat-CALIPSO data
- ML = ice-over-water cloud system with separation distance, SD = ice base CTH water top CTH
- **bold** denotes higher value in one-to-one comparisons, *parentheses* indicate MLtrue

Time, Ed4 phase	†Ed4	[†] MLANN SD > 1 km
Day, ice	-6.2 <mark>(10.5)</mark>	6.2 (12.1)
Day, water	1.6 <mark>(5.3)</mark>	8.2 (12.6)
Night, ice	0.2 <mark>(11.7)</mark>	10.2 (17.1)
Night, water	-0.6 <mark>(2.8)</mark>	5.2 <mark>(8.1)</mark>

[†]April 2009, Aqua MODIS, CALIPSO Horizontal averaging \leq 5 km *July 2009, Aqua MODIS, CALIPSO Horizontal averaging \leq 80 km

- separate cloud layers for more ML clouds than either Ed4 CO2-based ML detection or MLANN trained with SD > 3 km
- MLANN trained using SD is as accurate or more accurate than other currently available methods.
- Positive NGA indicates a reduction in uncertainty

NGA = trueML fraction - falseML fraction, in % of total cloud cover

trueML fraction = ML pixels from NN that match ice-over-water ML pixels from CloudSat-CALIPSO data

• MLANN trained using SD > 1 km produces a net gain in information allowing the confident deconstruction of the MODIS radiances into 2

Example Swath Application, Aqua MODIS data, 16 April 2009, ~3:50 UTC 62°S (top) and 52°S (bottom) around 165°E

• Thin cirrus revealed as ice in some cases, blurry part of the RGB image, greater CTH in upper left and center • MLANN catches much of the ML out to the edge and leaves many of the optically thick high clouds as SL

ML Seasonal Anomalies, 2009 over snow / ice free surfaces

• MLANN swath captures seasonal variability to within 1-2% of CC both day and night

Summary of NN CTH/CBH Retrievals

CTH & CBH for CERES can be determined more accurately for CERES using a neural network method

- Uncertainties reduced by more than 20%, if trained for SL and ML separately
- Dramatic reductions in accuracy relative to Ed4 VISST approach
- Accuracies represent the state of the art
- Uses only IR channels: it is applicable to all other satellites, theoretically
 - Need test with VIIRS, GOES, etc.
- $\Delta Zup = 0 \pm 1.26$ km compared to MCAT $\Delta Zup = -2.6 \pm 1.9$ km
- Δ Zlow = 0 ± 1.20 km vs MCAT Δ Zlow = 1.2 ± 2.0 km
- Clear improvement over Ed4
- Only daytime snow-free data used
 - Future analyses will use nighttime and snow/ice-covered surfaces
 - Early results see only slight decrease in accuracy
- - Need validation using a different year of data and Terra
 - Look at full swath dependencies (VZA radiance corrections?)
- - Initial analyses indicate only small loss in accuracy with no 6.7-µm channel
- Operational use will require constraining the results, e.g.,
 - No base heights below the surface or above max expected tropopause
 - Base height of upper cloud below top of lower cloud, etc.

• Need to test with full dataset and with MLANN results to determine the true expected errors

• 6.7-µm channel used, will need fusion data for VIIRS, or remove the parameters and retrain

BackUps

Summary of Daytime Cloud Top Height Analysis, Snow/Ice Free, 2008

		ΔZ		SDD		MAE			
		Ed4	NN	Ed4	NN	Ed4	NN		
SL	Single Layer								
Тор	All	-0.64	-0.16	2.45	1.42	1.47	0.74		
Base	High	-1.55	-0.57	2.70	1.79	2.10	1.08		
	Mid	-0.69	-0.12	1.99	1.02	1.51	0.65		
	Low	0.27	0.23	1.96	0.93	0.83	0.44		
ML			Multila	yer Uppei	r Cloud				
Гор Base	All	-4.83	-0.07	3.44	1.22	4.94	0.90		
–	High	-4.91	-0.11	3.45	1.19	5.01	0.89		
Base	Mid	-2.48	1.10	1.82	1.39	2.80	1.22		

- SL top heights improvement over Ed4
 - Bias: all down to zero; high dropped 63%; mid down by 83%; low down by 15%
 - SDD: all down by 47%; high down 34%; mid down by 51%; low down by 52%
 - MAE: all down by 50%; high down by 49%; mid down by 57%; low dropped by 48%
- ML top heights also a great improvement, decrease in every category
 - Bias: all to zero; high down 98%; mid down by 56%
 - SDD: all by 63%; high by 65%; mid by 24%
 - MAE: all by 80%; high down by 81%; mid down by 66%

All quantities in km

- ΔZ = mean difference, CC- Aqua
- **SDD** = std dev of differences
- **MAE** = mean absolute error

Low: 0 < *CTH* <= 3 *km Mid:* 3 < *CTH* <= 6 *km* High: CTH > 6 km

Summary of Daytime Cloud-Base Height Analysis, Snow / Ice Free, 2008

		ΔΖ		SDD		MAE			
		Ed4	NN	Ed4	NN	Ed4	NN		
SL	Single Layer								
Тор	All	0.44	-0.12	2.39	1.47	1.47	0.80		
Base	High	-1.41	-1.21	3.00	2.28	2.32	1.71		
	Mid	0.40*	-0.55	2.18	1.49	1.60	1.24		
R #1	Low	0.96	0.24	1.93	0.90	1.22	0.48		
ML	Multilayer Upper Clouds								
Top Base	AII	-4.68	-0.06	3.14	1.68	4.80	1.27		
Тор	High	-5.40	-0.43	3.06	1.55	5.46	1.24		
Base	Mid	-2.16	1.25	1.89	1.45	2.47	1.41		

* only Ed4 value better than NN value

• SL base heights improvement over Ed4

- SDD: all down by 45%; high down 24%; mid down by 40%; low down by 55%
- MAE: all down by 50%; high down by 25%; mid down by 27%; low dropped by 60%

• ML base heights also a great improvement, decrease in every category

- Bias: all to zero; high 92%; mid down by 42%
- SDD: all by 46%; high by 50%; mid by 25%
- MAE: all by 73%; high down by 77%; mid down by 43%

All quantities in km

- ΔZ = mean difference, CC- Aqua
- **SDD** = std dev of differences
- **MAE** = mean absolute error

Low: 0 < *CTH* <= 3 *km Mid:* 3 < CTH <= 6 km *CTH* > 6 *km* High:

• Bias: all down to zero; high dropped 15%; mid increased by 100%; low down by 75%

• The heights produced by the new methods, NN, provide a better characterization of cloud vertical structure than Ed4

Consistency Between MODIS and VIIRS

Summary of Daytime Cloud Top Height Analysis

All quantities in km (w/o 6.7-µm input parameters)

		ΔΖ		SDD		MAE				
		Ed4	NN	Ed4	NN	Ed4	NN			
CI	Single Layer									
Тор	All	-0.29	0.00 (0.00)	2.25	1.20 (1.24)	1.23	0.61 (0.63)			
Base	High	-1.56	-0.57 (-0.62)	2.70	1.79 (1.85)	2.10	1.08 (1.15)			
	Mid	-0.69	-0.12 (-0.08)	1.99	1.01 (1.06)	1.51	0.65 (0.68)			
	Low	0.27	0.23 (0.23)	1.96	0.92 (0.93)	0.84	0.44 (0.44)			
ML			Multila	ayer Uppe	r Cloud					
Тор	All	-4.69	0.00 (0.00)	3.41	1.26 (1.29)	4.82	0.92 (0.95)			
Base	High	-4.91	-0.11 (-0.12)	3.45	1.19 (1.21)	5.01	0.89 (0.91)			
Top Base	Mid	-2.48	1.10 (1.20)	1.82	1.39 (1.42)	2.80	1.22 (1.32)			

Cloud Base Height statistics are similar to CTH, not show.

All quantities in km

- **DZ** = mean difference, CC- Aqua
- **SDD** = std dev of differences
- **MAE** = mean absolute error

Without 6.7-µm Input

- Overall
 - No effect on bias
 - 3-4% increase in SDD
 - SL: no effect on MAE; ML: 2% rise
- High
 - 9% rise in bias
 - 1 3% rise in SDD
 - 2 3% rise in MAE
- Mid
 - SL: 33% drop in bias, ML: 9% rise
 - 0 3% rise in SDD
 - 1 2% increase in MAE
- Low
 - No impact

Sensitivity of MLANN Detection to Cloud Optical Depths, Snow-Free Surfaces, 2009

- Daytime: RC greatest for CODccice = 1.7, CODcM4 = 11, RC < 50% for CODccice < 0.3 RC < 50% when CODccice \approx CODcM4 or when CODccice > 4-5 Few ML detected when CODCM4 < 1.5
- Nighttime: RC greatest for CODccice = 0.9, CODсм4 = 2 for ice RC greatest for CODccice = 0.9, CODcM4 = 4 for water RC < 50% when CODccice < 0.1, >5.0

2-D Distributions of Layer Classification Functions of CODCM4 (bottom) or CODCCice (top)

- 50% of missed ML for CODcc < 0.4 for water phase; CODcc > 2-3 for ice phase
- 50% false ML for CODcm < 3.5 at night, < 7 during day for water phase
- 50% false ML for CODcm < 2.5 at night, < 5 during day for ice phase

