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Mean precipitation is energetically 
constrained by radiative cooling 

u In the absence of large-scale circulation, convective heating is primarily balanced by 
radiative cooling. 

u Clausius-Clapeyron ties water vapor to temperature, so flux divergence is 𝑇!-
invariant (Simpson’s law). 

u Thus, a warmer surface temperature simply adds a “new layer” of water vapor near 
the surface (Jeevanjee and Romps 2018). 
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Hydrological sensitivity is proportional 
to local radiative cooling rate 

u The radiative cooling rate at a temperature level 𝑇 is proportional to the 
hydrological sensitivity when 𝑇 is the surface temperature.

u If we assume a vertically constant radiative cooling rate, we obtain the 
canonical 2%/K value for hydrological sensitivity.

u Thus, the mechanisms that drive the tropospheric radiative cooling rate to 
be nearly constant are the same mechanisms that yield the canonical 
scaling for hydrological sensitivity. 
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An idealized spectral framework for 
hydrological sensitivity 

u Beginning with the radiative transfer equations, we assume:

u Clear-skies

u Longwave only

u Vertically constant RH

u Cooling dominated by water vapor

u Neglect pressure broadening

u Idealized mass-absorption coefficient

u Hydrological sensitivity stems from changes in atmospheric transmission 
with surface temperature. 

u We compare our idealized model with line-by-line calculations in PyARTS. 
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Mean rainfall changes when atmospheric 
transmission changes 

u Spectrally-resolved hydrological sensitivity reveals the wavenumbers where 
atmospheric transmission changes most with surface temperature. 
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Stefan-Boltzmann sets the magnitude of 
hydrological sensitivity

u In a water atmosphere without a continuum, broadband transmission sensitivity is 
nearly 𝑇!-invariant:

u Due to Stefan-Boltzmann, 𝑄 ∝ 𝑇!', yielding:

u The “symmetry” of the water vapor window causes atmospheric transmission to 
change at a near constant rate with 𝑇!, making Stefan-Boltzmann the 1st order 
driver of hydrological sensitivity.
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The water vapor continuum causes 
hydrological sensitivity to peak at 
subtropical surface temperatures
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Summary: The spectral roots of 
hydrological sensitivity

u Hydrological sensitivity is proportional to local 
radiative cooling rate. 

u Mean rainfall changes when atmospheric 
transmission changes. 

u Stefan-Boltzmann sets the magnitude of 
hydrological sensitivity.

u The water vapor continuum causes hydrological 
sensitivity to peak at subtropical surface 
temperatures. 
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