

Global Evaluation of Reanalysis Surface Temperatures and Station Observations in All-sky Conditions for use in CERES

B. Scarino¹, W. L. Smith¹, Jr., S. Kato¹, S.-H. Ham², and S. Sun-mack²

¹NASA Langley Research Center, Hampton, VA ²Analytical Mechanics Associates, Hampton, VA • Cloud mask threshold approaches rely on cloud-free skin temperature (T_s) estimate

- T_s in cloudy condition necessary for optical depth and height retrievals
- Downstream radiation budget calculations rely clouds and on model T_s in cloudy condition
- Need for stability in T_s estimates for clear and cloudy skies
- T_s and surface air temperature (T_a) estimates vary significantly between different reanalyses
- Differences between reanalyses and satellitederived T_s can be extreme

Large diurnal dependence in reanalysis land T_s bias

- Explore the consistency of T_s and T_a temperature across different reanalysis datasets, relative to...
 - ...one-another
 - ...global surface station observations
 - ...satellite
- Explore deep neural network (DNN) approach to produce consistent T_s estimates given any reanalysis dataset
 - Estimate one reanalysis dataset from another
 - Estimate satellite observation from reanalysis

Desire for consistent initial T_s regardless of reanalysis source

Global (non-polar) Reanalysis Skin Temperature Differences

- Seasonal, regional, and diurnal dependencies complicate reanalysis *T*_s bias accounting
- Land difference can easily swing by 1 K on average easily more than 6 K instantaneously

A change in reanalysis T_s will influence the cloud mask

Reanalysis vs. Observed Air Temperature

- Ground validation of T_s is limited, but surface T_q observations are global
- GMAO does not assimilate station $T_a T_s$ and T_a tied to numerical models of nearsurface processes

Assessing bias in T_a can help interpret bias in T_s

Reanalysis vs. Observed Air Temperature

- ERA5 assimilates station T_a over land
- Variation reduced by 1 K for day and night

Neural Net efforts initially focused on T_a input rather than T_s

Reanalysis vs. Observed Air Temperature

- Strong biases in both clear and cloudy conditions
- Overcast bias nearly as bad as clear because station T_a not assimilated

Clear and cloudy differences in T_a may inform expected T_s bias in cloudy conditions

Overcast Temperature Biases

- Cloudy bias needs consideration
 - Influences flux calculations
 - No satellite truth
- GMAO T_s and T_q are reasonably close in overcast conditions

Further Study: Can T_a observations lead to reliable T_s estimates in cloudy conditions?

Seasonal Station Observation Comparisons

- Large average bias and seasonal variation in GEOS541 daytime clear-sky
- MERRA2 1+ K too cold at night with ~0.6-K month-to-month variance
- ERA5 is the most certain and consistent although too warm at night

- Overall larger month-to-month variation in cloudy conditions
- GMAO too cold in Jan and Apr Oct at night
- Nighttime ERA5 improved when cloudy daytime accuracy remains

GEOS-IT and GEOS541 diurnal relationships consistent with changes in heat capacity – seasonal relative distributions more consistent in clear conditions

Regional Station Observation Comparisons

- GEOS-IT overall small bias and uncertainty compared to GEOS541 and MERRA2
- ERA5 fairly consistent although NA seems out-of-family (especially at night)

Regional Station Observation Comparisons

- Overall smaller region-to-region variation in cloudy conditions
- GEOS-IT less consistently accurate when cloudy
- GMAO largely too cold over land
- Relatively good ERA5 regional consistency, especially at night – although daytime AS and OC are noticeably too cold

Assimilation most beneficial where overcast

Deep Neural Network to Estimate Reanalysis Skin Temperature

Day

Deep Neural Network to Estimate Reanalysis Skin Temperature

With DNN

- Model relationships are multi-variate and complex
- DNN can help unravel and more consistently simulate all-sky GEOS541 *T_s* from different GMAO inputs

Note: Yet to prove that this DNN approach will result in more consistent cloud retrievals

Deep Neural Network to Estimate Satellite Skin Temperature

Night

Day

Original

With DNN

Deep Neural Network to Estimate Satellite Skin Temperature

With DNN

- Observation relationships show greater complexity
- DNN can exploit predictor correlations to arrive at a consistent, observations-based answer

Reanalyses T_s not designed to match Satellite T_s , but a deep neural network can help achieve that

- Clear and cloudy differences in T_a may inform expected T_s bias in cloudy conditions
- Varying relative performance between GMAOs across different seasons, regions, day+night, and cloud condition complicates T_s bias accounting
- ERA5 *T_a* is seasonally and (mostly) globally consistent
 - Except nighttime clear over NA and daytime AS and OC
 - Overcast conditions are especially accurate
- A deep neural network is effective at simulating a reference T_s that is consistent given any reanalysis dataset

Next Step: Use a DNN with GMAO inputs to correct GMAO T_a to observed T_a in sufficiently cloudy conditions

 i.e., use T_a-informed estimated T_s for better cloud optical depth and height retrievals and flux calculations

Additional Slides

Global Reanalysis Skin Temperature Differences

- Relationships change depending the reanalysis cloud conditions
- T_s tied to model's accuracy in predicting clouds

Resolving these degrees of freedom is a nonlinear consideration

Deep Neural Network to Estimate Satellite Skin Temperature

A DNN can consistently simulate satellite *T_s* from GMAO inputs