Sparse, Empirically Optimized Quadrature for Broadband Radiative Fluxes and Heating Rates

Paulina Czarnecki
Applied Physics and Applied Math, Columbia University

Advised by: Robert Pincus and Lorenzo Polvani

NASA CERES Meeting
October 18th, 2023
Calculating Radiative Quantities

- Physics of radiative transfer is well-known
Calculating Radiative Quantities

- Physics of radiative transfer is well-known
- Direct spectral integration, and even parameterization, is computationally expensive
Calculating Radiative Quantities

• Physics of radiative transfer is well-known
• Direct spectral integration, and even parameterization, is computationally expensive
• Parameterizations (correlated k-distributions) are often difficult to understand or apply to problems outside of scope
Calculating Radiative Quantities

- Physics of radiative transfer is well-known
- Direct spectral integration, and even parameterization, is computationally expensive
- Parameterizations (correlated k-distributions) are often difficult to understand or apply to problems outside of scope
- Many require tuning by experts
Calculating Radiative Quantities

- Physics of radiative transfer is well-known
- Direct spectral integration, and even parameterization, is computationally expensive
- Parameterizations (correlated k-distributions) are often difficult to understand or apply to problems outside of scope
- Many require tuning by experts

Aim: create an alternative method that is easy to understand and customizable to different problems
Proposed Approach

• Can we sparsely sample the spectrum instead?

\[F_{int} = \int F_{\nu} \, d\nu \approx \sum_i F_{\nu_i} \Delta \nu_i \]
Proposed Approach

• Can we sparsely sample the spectrum instead?

• Method: approximate the broadband integral with a weighted sum of a subset of monochromatic fluxes

\[
F_{int} = \int F_\nu \, d\nu \approx \sum_i F_\nu_i \Delta \nu_i \\
\approx \sum_{\nu \in S} w_\nu F_\nu
\]
Proposed Approach

• Can we sparsely sample the spectrum instead?
• Method: approximate the broadband integral with a weighted sum of a subset of monochromatic fluxes

\[F_{\text{int}} = \int F_{\nu} \, d\nu \approx \sum_{i} F_{\nu_i} \Delta \nu_i \]

\[\approx \sum_{\nu \in S} w_{\nu} F_{\nu} \]

• Two parts of the problem:
Proposed Approach

• Can we sparsely sample the spectrum instead?
• Method: approximate the broadband integral with a weighted sum of a subset of monochromatic fluxes

\[F_{\text{int}} = \int F_\nu \, d\nu \approx \sum_i F_{\nu_i} \Delta \nu_i \approx \sum_{\nu \in S} w_\nu F_\nu \]

• Two parts of the problem:
 • Predict the total flux with linear weights
Proposed Approach

• Can we sparsely sample the spectrum instead?
• Method: approximate the broadband integral with a weighted sum of a subset of monochromatic fluxes

\[
F_{\text{int}} = \int F_\nu \, d\nu \approx \sum_i F_{\nu_i} \Delta \nu_i
\]

• Two parts of the problem:
 • Predict the total flux with linear weights
 • Optimize the subset using simulated annealing
Training and Testing Data

• CKDMIP: high-resolution spectral fluxes and broadband reference calculations
 • Two independent datasets, 50 atmospheric profiles, 55 vertical levels, 7 million wavenumbers

• Here – present-day clear-sky longwave fluxes
 → Variation only in water vapor, temperature, and ozone
Flux Profiles

\[C = \|H_{est} - H_{ref}\| + f\|F_{est} - F_{ref}\| \]
Flux Profiles

\[C = \| H_{est} - H_{ref} \| + f \| F_{est} - F_{ref} \| \]

\[H_{est} = -\frac{g}{c_p} \frac{dF_{est}}{dp} \]

\[F_{est} = w F_{v \in S} \]
Flux Profiles

\[C = ||H_{est} - H_{ref}|| + f ||F_{est} - F_{ref}|| \]

RMS error in net flux (W/m²)

- Training
 - 64
 - 32
 - 16
 - 8
 - 4
 - eeCKD
 - RRTMGP

- Testing
 - 64
 - 32
 - 16
 - 8
 - 4

Pressure (hPa)
Heating Rates

\[C = \| H_{est} - H_{ref} \| + f \| F_{est} - F_{ref} \| \]
Heating Rates

\[C = \| H_{est} - H_{ref} \| + f \| F_{est} - F_{ref} \| \]
Limitations – Tied to Training Data

\[C = \| H_{est} - H_{ref} \| + f \| F_{est} - F_{ref} \| \]

\[H_{est} = -\frac{g}{c_p} \frac{dF_{est}}{dp} \]

\[F_{est} = \omega F_{\nu \in S} \]
Limitations – Tied to Training Data
Forcing by CO$_2$

\[C = \|H_{est} - H_{ref}\| + f \|F_{est} - F_{ref}\| + \|F_{est} - F_{ref}\| \]
Forcing by CO$_2$

\[C = \| H_{est} - H_{ref} \| + f \| F_{est} - F_{ref} \| + \| \mathcal{F}_{est} - \mathcal{F}_{ref} \| \]

\[\mathcal{F}_{est} = \text{OLR}^{\text{present}}_{est} - \text{OLR}^{\text{perturbed}}_{est} \]
Forcing by CO$_2$:

\[C = \| H_{est} - H_{ref} \| + f \| F_{est} - F_{ref} \| + \| \mathcal{F}_{est} - \mathcal{F}_{ref} \| \]

\[\mathcal{F}_{est} = OLR_{est}^{\text{present}} - OLR_{est}^{\text{perturbed}} \]

8 x CO$_2$
Forcing by CO$_2$

\[C = \|H_{est} - H_{ref}\| + f\|F_{est} - F_{ref}\| + \|\mathcal{F}_{est} - \mathcal{F}_{ref}\| \]
Forcing by CO₂

\[C = \| H_{est} - H_{ref} \| + f \| F_{est} - F_{ref} \| + \| F_{est} - F_{ref} \| \]

Sparse, Empirically Optimized Quadrature for Broadband Spectral Spectral Integration

Paulina Czarnecki, Lorenzo Polvani, Robert Pincus

First published: 30 September 2023 | https://doi.org/10.1029/2023MS003819
Implementation in a Simple Model

With Stefan Buehler (UHH), Manfred Brath (UHH), Richard Larsson (UHH), and Lukas Kluft (MPI)
Implementation in a Simple Model

Single-column RCE model developed by Lukas Kluft et al. at MPI, Hamburg
Implementation in a Simple Model

konrad

Single-column RCE model developed by Lukas Kluft et al. at MPI, Hamburg

Line-by-Line radiation code developed by Stefan Buehler et al. at Uni. Hamburg

ARTS
Implementation in a Simple Model

ARTS calculates monochromatic fluxes

Single-column RCE model developed by Lukas Kluft et al. at MPI, Hamburg

Line-by-Line radiation code developed by Stefan Buehler et al. at Uni. Hamburg

konrad
Implementation in a Simple Model

ARTS calculates monochromatic fluxes

Quadrature scheme computes fluxes + heating rates, and feeds back into atmospheric state

Single-column RCE model developed by Lukas Kluft et al. at MPI, Hamburg

Line-by-Line radiation code developed by Stefan Buehler et al. at Uni. Hamburg
Implementation in a Simple Model

ARTS

Konrad

Quadrature scheme
- Quadrature scheme computes fluxes + heating rates, and feeds back into atmospheric state

ARTS calculates monochromatic fluxes
- Includes longwave and shortwave clear-sky schemes that can handle present-day variations + perturbations in CO2

Single-column RCE model developed by Lukas Kluft et al. at MPI, Hamburg

Line-by-Line radiation code developed by Stefan Buehler et al. at Uni. Hamburg
Conclusions

• The quadrature scheme is more flexible than leading models
 • Our computational cost/accuracy are competitive
Conclusions

• The quadrature scheme is more flexible than leading models
 • Our computational cost/accuracy are competitive
• The scheme works well in a simple model in present-day, clear-sky conditions
Conclusions

• The quadrature scheme is more flexible than leading models
 • Our computational cost/accuracy are competitive
• The scheme works well in a simple model in present-day, clear-sky conditions

• Further challenges:
 • Clouds
 • Variation in a wider set of gases
Thank you!
Important quantities can + should be added to the cost function