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Calculating Radiative Quantities

• Physics of radiative transfer is well-known

• Direct spectral integration, and even 
parameterization, is computationally expensive

• Parameterizations (correlated k-distributions) are 
often difficult to understand or apply to problems 
outside of scope

• Many require tuning by experts

Aim: create an alternative method that 
is easy to understand and customizable 
to different problems
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Proposed Approach

• Can we sparsely sample the spectrum instead?

• Method: approximate the broadband integral with a weighted sum of 
a subset of monochromatic fluxes

• Two parts of the problem:
• Predict the total flux with linear weights

• Optimize the subset using simulated annealing



Training and Testing Data

• CKDMIP: high-resolution spectral fluxes and broadband reference 
calculations
• Two independent datasets, 50 atmospheric profiles, 55 vertical levels, 7 

million wavenumbers

• Here – present-day clear-sky 

longwave fluxes
→Variation only in water vapor, 

temperature, and ozone
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Implementation in a Simple Model
With Stefan Buehler (UHH), Manfred Brath (UHH), Richard Larsson (UHH), and Lukas Kluft (MPI)
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Implementation in a Simple Model

ARTS

konrad

quadrature scheme

Single-column RCE model 
developed by Lukas Kluft et al. at 
MPI, Hamburg

Line-by-Line radiation code 
developed by Stefan Buehler et al. 
at Uni. Hamburg

ARTS calculates monochromatic fluxesQuadrature scheme computes fluxes + 
heating rates, and feeds back into 
atmospheric state

Includes longwave and shortwave 
clear-sky schemes that can handle 
present-day variations + perturbations 
in CO2 
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Conclusions

• The quadrature scheme is more flexible than leading models
• Our computational cost/accuracy are competitive

• The scheme works well in a simple model in present-day, clear-sky 
conditions

• Further challenges: 
• Clouds

• Variation in a wider set of gases



Thank you!



Spectral Sampling







Cost Function Tradeoffs

Important quantities can + should be added to the cost function
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