# EBAF Ed4.2 vs 4.1 \& TOA SW Up 

Miklos Zagoni<br>Budapest, Hungary

Spring CERES Science Team Meeting
May 9-11, 2023, NASA LaRC, Hampton, VA.
(Remote Presentation)

$$
\begin{equation*}
E=\frac{A_{0}}{2}(\mathrm{1}+\bar{\tau}), \quad A=\frac{A_{0}}{2}(2+\bar{\tau}), \quad B=\frac{A_{0}}{2} \bar{\tau} \tag{II}
\end{equation*}
$$

Schwarzschild (1906, Eq. 11)
$E$ emission of a layer
$A$ upward beam at the given layer
$B$ downward beam at that layer
$A_{0}$ emerging beam at the upper boundary
$\tau$ optical depth
Net radiation at the surface:


Eq. (1) $\mathrm{A}-\mathrm{E}=\mathrm{SH}+\mathrm{LH}=\mathrm{A}_{0} / 2 \quad$ Liou (2002, Fig. 8.9)


May be derived from first principles (Milne 1930, Handbook of Astrophysics)
Represented in: Ostriker (1963, Eq. 15); Goody (1964, Eq. 2.115); Houghton (1977, Eq. 2.13); Chamberlain (1978, Eq. 1.2.29); Goody and Yung (1989, 2.146); Stephens (1991, Eq. 1 \& 2; 1994, Eq. 5a \& 5b); Hartmann (1994, Fig. 3.10-3.11); Liou (2002, Fig. 8.9); Pierrehumbert (2010, Eq. 4.44-4.45); Hartmann (2016, Fig. 3.16) ...
I think my study is the first that controls it on global mean observed data.

$$
\begin{equation*}
E=\frac{A_{0}}{2}(\mathrm{1}+\bar{\tau}), \quad A=\frac{A_{0}}{2}(2+\bar{\tau}), \quad B=\frac{A_{0}}{2} \bar{\tau} \tag{II}
\end{equation*}
$$

Eq. (2) $\mathrm{A}=2 \mathrm{~A}_{0}$ at $\tau=2$

### 2.5 Greenhouse Effect



Hartmann (1994, Fig. 2.3) $\quad \sigma \mathrm{T}_{\mathrm{S}}{ }^{4}=2 \sigma \mathrm{~T}_{\mathrm{A}}{ }^{4}$


Liou (1980, Fig. 8.20) $\epsilon=1=>\sigma T^{4}=2 \sigma T_{a}^{4}$

Total radiation at the surface if $\epsilon=1$ :
Eq. (2) $\quad A=2 \mathrm{~A}_{0}$

## Eq. (2): Why $\varepsilon=1$ ? Maximum entropy production?



Kato and Rose (2020, Fig. 1)
Entropy export to space by radiation (Eq.5), entropy produced within the atmosphere (Eq.7), and the total entropy produced by the Earth system (Eq.8), as a function of $\varepsilon$, is at maximum if $\varepsilon=1$.
$\left.T_{\text {sfc }}\right)$. Therefore, entropy export to space by radiation is

$$
\begin{equation*}
J_{\mathrm{TOA}}^{\mathrm{net}}=J_{\text {ref }}-J_{\mathrm{atm}}-(1-\varepsilon) J_{\mathrm{sfc}}+(1-\alpha) J_{\text {sun }} . \tag{5}
\end{equation*}
$$

Entropy produced by radiation exchange and heating at the surface is

$$
\begin{equation*}
\dot{\Sigma}_{\mathrm{sfc}}=\frac{F_{\mathrm{sfc}}^{\mathrm{net}}}{T_{\mathrm{sfc}}}=\frac{(1-\alpha-\beta) F_{0}+F_{\mathrm{atm}}-F_{\mathrm{sfc}}-F_{\mathrm{tur}}}{T_{\mathrm{sfc}}} \tag{6}
\end{equation*}
$$

and entropy produced within the atmosphere is

$$
\begin{equation*}
\dot{\Sigma}_{\mathrm{atm}}=\frac{F_{\mathrm{atm}}^{\mathrm{net}}}{T_{\mathrm{atm}}}=\frac{\beta F_{0}+\varepsilon F_{\mathrm{sfc}}+F_{\mathrm{tur}}-2 F_{\mathrm{atm}}}{T_{\mathrm{atm}}} \tag{7}
\end{equation*}
$$

The sum of Eqs. (5)-(7) is equal to the total entropy produced by the Earth system $\dot{S}_{\text {tot }}$,

$$
\begin{equation*}
\dot{S}_{\mathrm{tot}}=J_{\mathrm{TOA}}^{\mathrm{net}}+\dot{\Sigma}_{\mathrm{sfc}}+\dot{\Sigma}_{\mathrm{atm}} . \tag{8}
\end{equation*}
$$

Eq. (1) SFC SW+LW Net (clear) $=\mathrm{A}-\mathrm{E}=\mathrm{A}_{0} / 2$
Eq. (2) $\mathrm{SFC} \mathrm{SW}+\mathrm{LW}$ Total (clear) $=\mathrm{A} \quad=2 \mathrm{~A}_{0}$

Creating the all-sky versions (including LWCRE):

Eq. (3) SFC SW+LW Net (all) $=\mathrm{A}-\mathrm{E}=\left(\mathrm{A}_{0}-\mathrm{L}\right) / 2$
Eq. (4) SFC SW+LW Total (all) $=\mathrm{A} \quad=2 \mathrm{~A}_{0}+\mathrm{L}$

Eq. (1) SFC (SW down - SW up + LW down - LW up) (clear) = TOA LW (clear) $/ 2$
Eq. (2) SFC (SW down - SW up + LW down) $\quad($ clear $)=$ TOA $\quad$ LW (clear) $\times 2$
Eq. (3) SFC (SW down - SW up + LW down - LW up) (all) $=$ TOA $\quad[$ LW (all) - LWCRE] $/ 2$
Eq. (4) SFC (SW down - SW up + LW down)

$$
(\text { all })=\text { TOA } \quad \text { LW }(\text { all }) \times 2+\text { LWCRE }
$$

## Four Equations, EBAF Edition 2.8

(March 2000 - Feb 2016) (Rose et al. 2017, 27 ${ }^{\text {th }}$ CERES STM)
Eq. (1) SFC SW down - SW up + LW down - LW up (clear) = TOA LW (clear)/2

Eq. (2) SFC SW down - SW up + LW down (clear) $=2 \times$ TOA LW (clear)

Eq. (3) SFC SW down - SW up + LW down - LW up (all) $=[$ TOA LW (all) - LWCRE $] / 2$

Eq. (4) SFC SW down - SW up + LW down (all) $=2 \times$ TOA LW (all) + LWCRE

## Four Equations, EBAF Edition 2.8

(March 2000 - Feb 2016) (Rose et al. 2017, 27 th CERES STM)

```
Eq. (1) SFC SW down - SW up + LW down - LW up (clear) = TOA LW (clear)/2 Diff
Ed2.8 244.06-29.74 + 316.27-398.40 = 265.59/2 -0.60
\begin{tabular}{lcccc} 
Eq. (2) & SFC SW down - SW up + LW down & (clear) & \(=2 \times\) TOA LW (clear) & \\
Ed2.8 & \(244.06-29.74+316.27\) & & \(=2 \times 265.59\) & -0.59
\end{tabular}
Eq. (3) SFC SW down - SW up + LW down - LW up
Ed2.8 186.47-24.13 + \(345.15-398.27\)
\[
\begin{array}{rlr}
(\text { all }) & =[\text { TOA LW (all) }- \text { LWCRE }] / 2 \\
& =(239.60 & -25.99) / 2
\end{array}
\]
```

```
Eq. (4) SFC SW down - SW up + LW down
```

Eq. (4) SFC SW down - SW up + LW down
Ed2.8 186.47-24.13 + 345.15
Ed2.8 186.47-24.13 + 345.15

$$
\begin{array}{rlrl}
(\text { all }) & =2 \times \text { TOA LW (all) }+ \text { LWCRE } & \\
& =2 \times 239.60 \quad+25.99+2.30
\end{array}
$$

```

\title{
Four Equations, EBAF Edition 4.1 \\ CERES EBAF Ed4.1 \& Ed4.2, 22 years (April 2000 - March 2022) ( \(\mathrm{Wm}^{-2}\) )
}
\(\left.\begin{array}{lccc}\text { Eq. (1) } & \text { SFC SW down }- \text { SW up }+ \text { LW down }- \text { LW up (clear) } & =\text { TOA LW (clear)/2 } & \text { Diff } \\ \text { Ed4.1 } & 240.8680-29.0724+317.4049-398.5211 & =266.0122 / 2 & -2.3267 \\ & & & \\ \text { Eq. (2) } & \text { SFC SW down }- \text { SW up }+ \text { LW down } & \text { (clear) } & =2 \times \text { TOA LW (clear) } \\ \text { Ed4.1 } & 240.8680-29.0724+317.4049 & & =2 \times 266.0122\end{array}\right\}-2.5752\)


\section*{The four equations are intimately connected Decrease TOA LW(clear) by \(1 \mathrm{Wm}^{-2}\)}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Eq. (1) & SFC & SW down - SW up + LW down - LW up (clear) & = TOA LW (cle & ar)/2 & Diff & \\
\hline Ed4.1 & & \(240.8680-29.0724+317.4049-398.5211\) & = \(266.0122 / 2\) & & -2.3267 & \\
\hline Ed4.1 & & 240.8680-29.0724 + \(317.4049-398.5211\) & = \(265.0122 / 2\) & & -1.8267 & \\
\hline Eq. (2) & SFC & SW down - SW up + LW down (clear) & \(=2 \times\) TOA LW & (clear) & & -1.3252 \\
\hline Ed4.1 & & \(240.8680-29.0724+317.4049\) & \(=2 \times 266.0122\) & & -2.8238 & \\
\hline Ed4.1 & & \(240.8680-29.0724+317.4049\) & \(=2 \times 265.0122\) & & -0.8238 & \\
\hline Eq. (3) & SFC & SW down - SW up + LW down - LW up (all) & \(=[\) TOA LW (all & ) - LWCRE]/2 & & \\
\hline Ed4.1 & & 186.8544-23.1629 + 345.0108-398.7454 & \(=(240.2450\) & - 25.7672)/2 & +2.7083 & \\
\hline Ed4.1 & & 186.8544-23.1629 + 345.0108-398.7454 & \(=(\mathbf{2 4 0 . 2 4 5 0}\) & - 24.7672)/2 & +2.2083 & 2.5766 \\
\hline Eq. (4) & SFC & SW down - SW up + LW down (all) & \(=2 \times\) TOA LW & (all) + LWCRE & & +2.8266 \\
\hline Ed4.1 & & 186.8544-23.1629 + 345.0108 & \(=2 \times 240.2450\) & + 25.7672 & +2.4450 & \\
\hline Ed4.1 & & 186.8544-23.1629 + 345.0108 & \(=2 \times 240.2450\) & +24.7672 & +3.4450 & \\
\hline Ed4.1 & & & & Mean & +0.0007 & \\
\hline Ed4.1 & & & & Mean & +0.7507 & \\
\hline
\end{tabular}

\section*{Four Equations, EBAF Edition 4.1 \& 4.2 CERES EBAF Ed4.1 \& Ed4.2, 22 years (April 2000 - March 2022) ( \(\mathrm{Wm}^{-2}\) )}


\section*{EBAF Edition 4.2 \\ 22 years (Apr 2000-Mar 2022) 22 years (Jan 2001 - Dec 2022)}
\begin{tabular}{|c|c|c|c|}
\hline Eq. (1) SFC & SW down - SW up + LW down - LW up (clear) & = TOA LW (clear) \(/ 2\) & Diff \\
\hline Apr-March & 241.1519-29.7397 + 317.8570-398.6099 & = \(266.1348 / 2\) & -2.4081 \\
\hline Jan-Dec & 241.1085-29.7012 + 317.9809-398.7213 & \(=266.1207 / 2\) & -2.3935 \\
\hline Eq. (2) SFC & SW down - SW up + LW down (clear) & \(=2 \times\) TOA LW (clear) & -2.6234 \\
\hline Apr-March & 241.1519-29.7397 + 317.8570 & \(=2 \times 266.1348\) & -3.0005 \\
\hline Jan-Dec & 241.1085-29.7012 + 317.9809 & \(=2 \times 266.1207\) & -2.8533 \\
\hline Eq. (3) SFC & SW down - SW up + LW down - LW up (all) & \(=[\) TOA LW (all) - LWCRE]/2 & \\
\hline Apr-March & 187.0918-23.4436 + \(346.1147-398.4220\) & \(=(240.3317-25.8032) / 2\) & +4.0766 \\
\hline Jan-Dec & \(187.0941-23.4179+346.2001-398.5297\) & \(=(240.3606-25.7601) / 2\) & +4.0463 \\
\hline Eq. (4) SFC & SW down - SW up + LW down (all) & \(=2 \times\) TOA LW (all) + LWCRE & \[
\begin{aligned}
& +3.6865 \\
& +3.7206
\end{aligned}
\] \\
\hline Apr-March & 187.0918-23.4436 + 346.1147 & \(=2 \times 240.3317+25.8032\) & +3.2963 \\
\hline Jan-Dec & 187.0941-23.4179 + 346.2001 & = \(2 \times 240.3606+25.7601\) & +3.3949 \\
\hline Apr-March & & Mean & +0.4911 \\
\hline Jan-Dec & & Mean & +0.5486 \\
\hline
\end{tabular}



Number of years in the average

\section*{Libera Science Goals \& Objectives}

\section*{Overarching goals:}

\section*{1) Provide seamless continuity of the ERB measurement with} characteristics identical to CERES
> Prevents gap in ERB data record critical for studies of global climate change
> Tied to Science objective 1: Use extended record to identify and quantify processes responsible for the instantaneous to decadal variability of ERB
2) Develop a self-contained, innovative, affordable observing system
> Novel, miniaturized detectors greatly improve accuracy \& stability and pave
 way toward smaller \& cost-effective follow-on mission.
> Science objective \(\mathbf{2}\) Libera tests a miniature wide field-of-view camera to provide scene \& angular context crucial for radiative flux retrieval
3) Provide new and enhanced capabilities that support extending ERB science goals
> Employ Split-Shortwave channel to derive SW VIS and NIR fluxes and quantify SW energy disposition
> Tied to Science objective 3: Revolutionize understanding of spatiotemporal variations in SW, VIS \& NIR irradiance

Hemispheric Albedo Symmetry?







\section*{The N-numbers, as solution of the equations Pure geometry, no reference to GHGs}


Eq.(2) \(\mathrm{A}=2 \mathrm{~A}_{0}\)
(Clear-sky) Eq.(1) \(\Delta A=A_{0} / 2, E=3 A_{0} / 2\)

\(8+12-15=10 / 2\)
\(8+12=10 \times 2\)
Eq. (1) SFC Net \(=\mathrm{A}_{0} / 2\)
Eq. (2) SFC Tot \(=2 A_{0}\)
Clear-sky

\(6+13-15=(9-1) / 2\)
\(6+13=9 \times 2+1\)
Eq. (3) SFC Net \(=\left(A_{0}-L\right) / 2\)
Eq. (4) SFC Tot \(=2 A_{0}+L\)
All-sky

Ed4.2 is better (closer to \(\mathbf{N}\) ) in most flux components in the clear-sky
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & Clear-sky & N & \(\mathbf{N} \times\) Unit & Ed4.1 & Diff & Ed4. 2 & Diff \\
\hline TOA & LW & 10 & 266.80 & 266.01 & -0.79 & 266.13 & -0.67 \\
\hline \multirow{5}{*}{Surface} & SW Net & 8 & 213.44 & 211.80 & -1.64 & 211.41 & -2.03 \\
\hline & LW down & 12 & 320.16 & 317.40 & -2.76 & 317.86 & -2.30 \\
\hline & LW up & 15 & 400.20 & 398.52 & -1.68 & 398.61 & -1.59 \\
\hline & LW Net & -3 & -80.04 & -81.12 & -1.08 & -80.75 & -0.71 \\
\hline & TOT Net & 5 & 133.40 & 130.68 & \(-2.72\) & 130.66 & -2.74 \\
\hline
\end{tabular}

No significant difference, Ed4.1 is a bit better
\begin{tabular}{|c|cccccccc|}
\hline \multirow{9}{*}{ TOA } & All-sky & \(\mathbf{N}\) & \(\mathbf{N} \times\) Unit & Ed4.1 & Diff & Ed4.2 & Diff \\
\hline \multirow{4}{*}{ Surface } & LW & \(\mathbf{9}\) & 240.12 & 240.25 & 0.13 & 240.33 & 0.21 \\
\cline { 2 - 9 } & LW Net & \(\mathbf{6}\) & 160.08 & 163.69 & 3.61 & 163.65 & 3.57 \\
\cline { 2 - 9 } & LW down & \(\mathbf{1 3}\) & 346.84 & 345.01 & -1.83 & 346.11 & -0.73 \\
\cline { 2 - 9 } & LW Net & \(\mathbf{- 2}\) & -53.36 & -53.74 & -0.38 & -52.31 & 1.05 \\
\cline { 2 - 8 } & TOT Net & \(\mathbf{4}\) & 106.73 & 109.95 & 3.22 & 111.34 & 4.61 \\
\hline \multirow{3}{*}{} & LW CRE & \(\mathbf{1}\) & 26.68 & 25.77 & -0.91 & 25.80 & -0.88 \\
\hline
\end{tabular}

\section*{But what about \(\alpha\) and \(\beta\) ?}


Kato and Rose (2020)

Starting point: The simplest greenhouse model


\section*{Starting point: The simplest greenhouse model}


Solar Absorbed Surface (SAS) Upward LongWave (ULW) Downward Longwave Radiation (DLR)

\section*{Multiply by 5}


\section*{Introduce 1 unit RSR at TOA; \(\alpha=1 / 5\)}


\section*{Allow 1 unit solar absorption in atmosphere; \(\beta=1 / 5\)}


\section*{Add 2 units turbulence to satisfy Eqs. (1) and (2)}


\section*{Calibrate to TSI: 1 (black) unit is 10 (red) units}


I created 2 (red) units hiatus

\section*{Solution: Reflect 2 (red) units less}


\section*{Absorption will be 3 (red) units more}

Re-distribute the absorption: 1 in ATM, 2 at SFC


Ready. My clear-sky on the disk.

\section*{Transform to red units}


The only input parameter is TSI

\section*{Divide by 4}


My clear-sky on the sphere.

The only input parameter is TSI


\section*{Theory vs EBAF Ed4.2, clear-sky}


\section*{OLR \(10 \rightarrow 9\), My all-sky system on the sphere}


\section*{Theory vs Ed4.2, all-sky, \(\alpha=15 / 51=5 / 17, \beta=12 / 51=4 / 17\)}


Table 2-1. Theory vs observation for global mean clear-sky fluxes for April 2000-March 2022 (W m²)
\begin{tabular}{c|c|c|c|c|c}
\hline \multirow{4}{*}{\begin{tabular}{c} 
Clear-Sky \\
TOA
\end{tabular}} & Clear-sky & \(\mathbf{N}\) & \(\mathbf{N} \times\) Unit & EBAF Ed4.2 & Difference \\
\cline { 2 - 6 } & SW insolation & \(\mathbf{5 1 / 4}\) & 340.17 & 340.18 & 0.01 \\
\cline { 2 - 6 } & LW & \(\mathbf{4 0} / 4\) & 266.80 & 266.13 & -0.67 \\
\cline { 2 - 6 } & SW & \(\mathbf{8 / 4}\) & 53.36 & 53.76 & 0.40 \\
\hline \multirow{5}{*}{\begin{tabular}{c} 
Clear-sky \\
Surface
\end{tabular}} & LW down & \(\mathbf{3 / 4}\) & 20.01 & 20.29 & 0.28 \\
\cline { 2 - 6 } & LW up & LW Net & \(\mathbf{1 2}\) & 320.16 & 317.86 \\
\cline { 2 - 6 } & SW Net & \(\mathbf{1 5}\) & 400.20 & 398.61 & -2.30 \\
\cline { 2 - 6 } & SW + LW Net & \(\mathbf{8}\) & -80.04 & -80.75 & -0.71 \\
\hline \multirow{3}{*}{} & & 213.44 & 211.41 & -2.03 \\
\hline
\end{tabular}

Table 4-1. Theory vs observation for global mean TOA and surface fluxes and CREs for EBAF Edition 4.2 for April 2000 to March 2022 (W m²).
\begin{tabular}{|c|c|c|c|c|c|}
\hline & All-sky & \(\mathbf{N}\) & \(\mathbf{N} \times\) Unit & EBAF Ed4.2 & Diff \\
\hline \multirow{6}{*}{ TOA } & SW insolation & \(\mathbf{5 1 / 4}\) & 340.17 & 340.18 & 0.01 \\
\cline { 2 - 6 } & SW up & \(\mathbf{1 5 / 4}\) & 100.05 & 99.05 & -1.00 \\
\cline { 2 - 6 } & LW up & \(\mathbf{3 6 / 4}\) & 240.12 & 240.33 & 0.21 \\
\cline { 2 - 6 } & TOT Net & 0 & 0 & 0.8 & 0.80 \\
\hline \multirow{6}{*}{ Surface } & SW Net & \(\mathbf{6}\) & 160.08 & 163.65 & 3.57 \\
\cline { 2 - 6 } & LW down & \(\mathbf{1 3}\) & 346.84 & 346.11 & -0.73 \\
\cline { 2 - 6 } & LW up & \(\mathbf{1 5}\) & 400.20 & 398.42 & -1.78 \\
\cline { 2 - 6 } & LW Net & \(\mathbf{- 2}\) & -53.36 & -52.31 & 1.05 \\
\cline { 2 - 6 } & TOT Net & \(\mathbf{4}\) & 106.72 & 111.34 & 4.62 \\
\hline \multirow{5}{*}{ TOA } & CRE & & & & \\
\hline & SW & \(\mathbf{- 7 / 4}\) & -46.69 & -45.28 & 1.41 \\
\cline { 2 - 6 } & LW & \(\mathbf{1}\) & 26.68 & 25.80 & -0.88 \\
\cline { 2 - 6 } & Net & \(\mathbf{- 3 / 4}\) & -20.01 & -19.48 & 0.53 \\
\hline
\end{tabular}

\section*{Concluding}
- My talk:
- EEI:
- The meeting:
- Earth Energy Budget: Eqs. (1) - (4) are compulsory

\section*{Last minute: extras, comments}

\section*{EBAF-TOA Edition 4.2 23 years (March 2000 - February 2023)}
- Observed :
- ISR \(=340.19 \mathrm{Wm}^{-2}\)
-TSI \(=4.0034 \times 340.19=1361.92 \mathrm{Wm}^{-2}\)
- Theory with geodetic weighting:
- LWCRE \(=\) TSI/51 \(\times(4 / 4.0034)=1=26.68 \mathrm{Wm}^{-2}\)
- LWCRE (with spherical weighting \(=26.70 \mathrm{Wm}^{-2}\)

\section*{It is frequently stated that Net CRE = SW CRE + LW CRE}

Yes, but by def.:
- TOA Net CRE \(\equiv\) RSR(clear) - RSR(all) + OLR(clear - OLR(all) \(=\)
- TOA Net CRE = ISR - ASR(clear) - [ISR - ASR(all)] + LWCRE =
- TOA Net CRE = ASR(all) - ASR(clear) + [OLR(clear) - OLR(all)] \(=\)
- TOA Net CRE \(=-[\) ASR(clear) - OLR(clear) \(]+\) EEI(all) \(=\) EEI(all) - EEI(clear).

In equilibrium (EEI (all) =0):
- TOA net CRE \(=-\) EEI(clear) \(\quad=-3 / 4=-20.01 \mathrm{Wm}^{-2}\)
- TOA clear IMB \(=\) EEI(clear) \(=\mathrm{ASR}-\mathrm{OLR}=43 / 4-40 / 4=3 / 4=20.01 \mathrm{Wm}^{-2}\)

To understand the global character of TOA Net CRE, no clouds are needed.
It depends only on clear-sky values: SW absorption and LW emission (and EEI(all)).

\section*{Clear-Sky Greenhouse Effect at GFDL}

\section*{LWCRE (theory) \(=1=26.68 \pm 0.01 \mathrm{Wm}^{-2}\) \\ \(\mathrm{G}(\mathrm{clear}\), theory \()=15-10=5=133.40 \pm 0.05 \mathrm{Wm}^{-2}\) \\ G (GFDL AM4) \\ \(=133.4 \pm 0.6 \mathrm{Wm}^{-2}\)}

Quantifying the Drivers of the Clear Sky Greenhouse Effect, 2000-2016
Shiv Priyam Raghuraman «<, David Paynter, V. Ramaswamy(JGR 2019)

\section*{Table 2}

Global Mean and Time Mean G Comparison Between Observational, Reanalysis, and Modeling Data Sets Over March 2000 to August 2016
\begin{tabular}{lccccc} 
Quantity & ERBE & CE 4.1" "" & CE 4.1" \(t\) " & ERA-Interim & GFDL AM4 \\
\hline\(G_{\text {Oceans }}\) & \(146 \pm 7\) & \(131.3 \pm 0.5\) & \(134.1 \pm 0.5\) & \(134.8 \pm 0.6\) & \(135.0+0.5\) \\
G & - & \(129.7 \pm 0.6\) & \(132.4 \pm 0.6\) & \(133.1 \pm 0.7\) & \(133.4 \pm 0.6\) \\
\hline
\end{tabular}

\section*{Overall conclusion}

This is not a 'just-so' world.

Not "If this goes up, than that goes down" world.

This is a principled world.```

