

CERES Science Team Meeting, May 7-9, 2023, NASA LaRC, Hampton, VA

Global Mean All-Sky TOA Flux Anomalies (CERES EBAF Ed4.2; 03/2000–02/2023)

Units: Wm ⁻²	Solar Irradiance	ASR	–OLR	NET
03/2000-02/2010	340.14	240.7	-240.2	0.53
03/2013-02/2023	340.17	241.7	-240.6	1.08
Difference	0.03	1.0	-0.4	0.55

Regional Trends in TOA Radiation and SST (03/2000–02/2023)

Zonal Mean All-Sky TOA Flux Trends (03/2000–12/2022)

Global Mean Trends (09/2002-03/2020)

Combined changes in clouds, sea-ice, WV and trace gases exceed influence from temperature changes, resulting in a positive overall trend in net TOA flux. Twelve-Month Running Average Global Anomalies in SST and TOA radiation (03/2000–12/2022)

Monthly Time Series and Trends in MEI and SST (07/2002-12/2022)

- Despite large variations in ASR and –OLR trends (>1 Wm⁻² dec⁻¹), NET trends are nearly constant (< 0.1 Wm⁻² dec⁻¹ variation).
- \Rightarrow Rate of increase in planetary heat uptake (i.e., d(NET)/dt) is relatively insensitive to internal climate variability during CERES.
- \Rightarrow Is this by chance? Or does it say something more fundamental about climate system?

Methodology

1) <u>Determine meteorology by cloud type</u>:

- Read in meteorological variables (EIS, T_{skin}) in SSF1deg-daily for one month.
- Sort and average meteorology by cloud type categories in FluxbyCldTyp-daily files to produce monthly meteorology by cloud type (6 cloud optical depth, 7 cloud-top pressure).

2) Determine flux by cloud class:

- Read in monthly meteorology by cloud type from step 1.
- For each gridbox, determine overall cloud fraction and mean SW TOA flux contribution for the following cloud classes:

Cloud Class	Cloud Top Press (hPa)	EIS (K)	Latitude Range
Stratocumulus (Sc)	> 680	> 5	λ < 60°
Stratocumulus-to-Cumulus Transition (SCT)	> 680	0 – 5	λ < 60°
Shallow Cumulus (Cu)	> 680	< 5	λ < 60°
Middle	440 - 680	-	λ < 60°
High	< 440	—	λ < 60°
Polar	—	-	λ <u>≥</u> 60°

- Determine anomalies and trends for each cloud class (07/2002-12/2021)

Cloud Fraction by Cloud Class (September 2002)

Stratocumulus (Sc)

Middle

High

Polar

Shallow Cumulus (Cu)

Trends in Daytime SW flux, –OLR Flux and Cloud Fraction by Cloud Type (07/2002-12/2022)

- For the entire period, the large positive ASR trend is primarily driven by reductions in low and middle clouds.
- The increase in OLR (decrease in -OLR) is primarily due to increased emission from cloud-free regions.
- Low clouds exhibit far more variability across the different periods than any other cloud type.

Zonal ASR Trends by Low Cloud Type (07/2002–12/2022)

Hemispheric Clear and Cloud Fraction Trends by Cloud Type: MODIS vs CALIPSO+Cloudsat (01/2007-12/2017)

- Similar low and middle cloud trends in both hemispheres
- Consistent high cloud trends in SH but opposite in NH

Ocean Mixed Layer Heat Budget (01/2006–12/2021) (Monthly in 1x1 deg latitude-longitude oceanic regions)

F_{TOA}: Net TOA Flux **}** CERES EBAF Ed4.1

 F_{S} : Surface Energy Flux = $F_{TOA} - \nabla \cdot F_{A} - AET$

 ∇F_A : divergence of lateral atmospheric energy transports AET: vertically integrated atmospheric energy tendency

Mayer et al. (2017)

```
\rho C_p h dT/dt = Ocean mixed layer heat content tendency

h = Ocean mixed layer depth (GODAS)

T = Sea-surface temperature (ERA5)

F_{BML} : F_S - \rho C_p h dT/dt
```

Global Ocean Mixed Layer (OML) Energy Budget (01/2006-12/2021)

 F_{s}

F_{BML}

Regional Ocean Mixed Layer (OML) Energy Budget (01/2012–07/2016)

- OML heating over much of Pacific Ocean and N. Atlantic.

Mean Anomaly in SST

Mean Niño 3.4 Index					
-0.39	0.37	-0.20			

Conclusions

- CERES observations show a doubling in Earth's Energy Imbalance (EEI) during the CERES period.
- The EEI trend is primarily associated with an increase in absorbed solar radiation (ASR) partially offset by an increase in OLR.
- ASR and SST global and regional trends track one another.
 - \Rightarrow Large ASR trend primarily driven by reductions in low and middle clouds.
 - \Rightarrow Ocean mixed layer heating (and SST) variations primarily associated with ocean heat fluxes as opposed to surface heat fluxes.
- Despite substantial variations in ASR and OLR trends for "hiatus", "transition to El Niño", and "post-El Niño" periods, NET trends are nearly identical in all 3 periods (within 0.1 Wm⁻² dec⁻¹).
 - ⇒ Implies rate of increase in planetary heat uptake is relatively insensitive to internal climate variability during CERES.

Cloud Fraction by Cloud Class (September 2002)

Stratocumulus (Sc)

Middle

High

Polar

Shallow Cumulus (Cu)

Annual Mean Net TOA Radiation & In-Situ Planetary Heat Uptake (07/2005-06/2022)

(update to Loeb et al., 2021)

Climate Model vs CERES Trend Comparison

- Including climate forcing changes EEI trend from negative to positive, but still lower than CERES.

- Including climate forcing causes decrease in both reflected SW and OLR trends.
- Decrease in AM4 reflected SW is significantly weaker than CERES, even when climate forcing is included.

"Symptoms" of a Positive Earth Energy Imbalance

From von Schuckmann et a. (2016)

A positive EEI leads to:

- A rise in Earth's surface temperature, atmospheric moisture and global mean sea level
- Shifts in atmospheric circulation patterns, leading to more extreme weather (⇒ flooding, drought)
- Increase in ocean heat content, leading to ocean acidification, impacting fish and other marine biodiversity
- Decrease in land and sea ice, snow cover and glaciers

Global Mean All-Sky TOA Flux Monthly Anomalies (03/2000-01/2022; Climatology: 05/2018-06/2019)

- Based upon CERES SSF1deg products (no GEO)
- NET monthly anomalies consistent to 0.3 Wm⁻² (1 σ)
- No evidence of CERES instrument drift

CERES Global Mean Net TOA Flux Trends vs Record Length

- Terra & Aqua net TOA flux trends are consistent to < 0.1 Wm⁻² per decade for the full period

Loeb et al. JGR, 2022