Decomposition of CRE interannual variability with the FluxByCldTyp dataset

Nayeong Cho, Lazaros Oreopoulos, Dongmin Lee (NASA-GSFC)
Mark Zelinka (LLNL)

Why FluxByCldTyp (FBCT)?

- Resolves the (subgrid) details of $C R E=F_{\text {all-sky }}-F_{c l r}$
- $1^{\circ} \mathrm{CRE}=F_{\text {all-sky }}-F_{\text {clr }}$ comes from contribution of many clouds within a grid cell and FBCT resolves these subgrid details.
- Provides a CRE array CRE(i), $i=1,42$ (7 CTP and 6 TAU bins)
- GCMs typically do not provide subgrid CRE
- Allows us to examine the contribution of different cloud "types" (as defined by CTP - TAU combinations) to CRE at various spatiotemporal scales.
- See for example the global SW and LW C $\widetilde{R E(i) f r o m ~ m o n t h l y ~ F B C T . . . ~}$

Global SW and LW $C \widetilde{R E}(i)$ from monthly FBCT, 2003-2019 GODPARD

Cloud Radiative Kernels

- Following Zelinka et al. (2012) one can view $\operatorname{CRE}(\boldsymbol{i})$ as the product of cloud fraction array $C(i), i=1,42$ and a "Cloud Radiative Kernel" CRK (K (i))

$$
\left.K(i) \equiv\left(F_{o v c}(i)-F_{c l r}(i)\right) / 100 \text { (often assuming that } F_{c l r}(i)=\text { grid cell mean } F_{c l r}\right)
$$

- $\operatorname{CRE}(i)=C(i) \times K(i)$
- But a single global $\widetilde{C(i)}$ multiplied by a single global $\widetilde{K(i)}$ does not give correct $C \widetilde{R E(i)}$
- Resolving $K(i)$ by latitude and month helps: obtain then global $\widetilde{C R E(i)}$ by averaging zonal values of $C(i) \times \overline{K(i)}, C \widetilde{R E(i)} \approx C(i) \times \bar{K}(i)$
- One expects $K(i)$ to be somewhat sensitive to binning choice
- The Zelinka CRKs came from off-line RT computations; FBCT provides observed CRKs (see also Sun et al. 2022)

Why is this concept useful?

- We can examine why CRE changes.
- The CRK is meant to be a fundamental property capturing the sensitivity of CRE to cloud changes for given certain atmospheric and surface conditions.
- To first order, $\triangle C R E$ anomalies may be driven by changes in the cloud fraction array $C(i)$ i.e., cloud amount changes within CTP - TAU bins which reflect changes in $C_{\text {tot }}$, and/or mean CTP,TAU.
- It is thus tempting to interpret $\operatorname{CRE}(i)$ anomalies $\triangle C R E(i)$ in terms of $C(i)$ anomalies $\Delta C(i): \Delta C R E(i) \approx \Delta C(i) \times K(i)$.
- FBCT allows us to calculate $\triangle C R E(i)$ either directly, or through the kernel method.

$$
\Delta C \times \bar{K}
$$

2003-2019

While $C \overline{R E}(i) \approx C(\overline{i) \times \bar{K}(i)}$, the first-order approximation $\Delta \widetilde{C R E}(i) \approx \Delta C(\overline{i) \times \overline{K(i)}}$ does not appear to hold.
$\overline{K(i)}$ changes need to be taken into account!
(simplified notation)

$\Delta C R E$

$\Delta \boldsymbol{C} \times \overline{\boldsymbol{K}}$
decent agreement

$0.19 \mathrm{~W} / \mathrm{m}^{2} /$ decade

$\bar{C} \times \Delta \boldsymbol{K}$

M1

[^0]$\stackrel{\text { pretty good agreement }}{\longrightarrow}-0.54 \mathrm{~W} / \mathrm{m}^{2} /$ decade

A closer look at the cloud anomaly term "(2) \times (3)"

$$
\begin{aligned}
\Delta \boldsymbol{C}= & \Delta \boldsymbol{C}_{\text {tot }}+\Delta \boldsymbol{C}_{\Delta C T P}+\Delta \boldsymbol{C}_{\Delta T A U^{\prime}}+\Delta \boldsymbol{C}_{\text {residual }} \\
& \text { Methodology : Zelinka et al., } 2013
\end{aligned}
$$

SW: (2) X (3) SW: (4) X (5) LW: (2) X (3) LW: (4) X (5)

A closer look at the kernel anomaly term "(4) \times (5)" GODDARD

$$
\begin{aligned}
& \stackrel{(1)}{\boldsymbol{C}} \boldsymbol{R} \boldsymbol{E} \approx \stackrel{(2)}{\Delta} \boldsymbol{C} \times \stackrel{(3)}{\boldsymbol{K}} \\
& \Delta C R E=\Delta C \times\left(\overline{\left.F_{\text {ovc }}-F_{c l r}\right)}\right. \\
& \Delta C R E=\Delta C \times\left(\overline{\left.\boldsymbol{F}_{\text {ovc }}-\boldsymbol{F}_{\text {clr }}\right)}\right.
\end{aligned}
$$

from the kernel (no covariance)
directly calculated

$$
\text { (2) } \times(3)+(4) \times(5)
$$

kernel anomaly overcast flux anomaly clear-sky flux anomaly (blue indicates outgoing flux increases)

Everything together

$\stackrel{(4)}{\bar{C}} \times \quad \stackrel{(5)}{\Delta K}$
$\overline{\boldsymbol{C}} \times \Delta \boldsymbol{F}_{\boldsymbol{o v c}}-\overline{\boldsymbol{C}} \times \Delta \boldsymbol{F}_{\boldsymbol{c l r}}$
(4)
(B)

Potential extension by breaking down by cloud class/type/regime

- In GCM work, Zelinka et al. (2022) considered only within-regime cloud anomaly (2) \times (3) and between regime frequency change (6) terms.
- Have to use daily FBCT data because CRs are defined daily.
- Each CR has its own K, but their $\Delta K s$ appear noisy.

	Daily dataset		W^{-2}	decade $^{-1}$
Monthly dataset				
	directly $\left(\Delta C R E=\sum_{k=0}^{K} \Delta C R E_{k} f_{k}\right)$	from equation above (no covariance)	directly	from cloud anomaly + kernel anomaly (no covariance)
SW	0.28	0.29	0.35	0.30
LW	-0.50	-0.45	-0.56	-0.54

Conclusions

- CERES FBCT allows for a Cloud Radiative Kernel (CRK) framework to be used to analyze and interpret $\triangle C R E$.
- The first-order approximation of $\triangle C R E$ coming from cloud changes and fixed CRKs cannot reproduce directly calculated $\triangle C R E$.
- When CRK anomalies/trends are accounted for (i.e., anomalies in overcast and clear-sky fluxes) good global agreement between direct and kernel-based estimates of $\triangle C R E$ is achieved.
- 2003-2019 analysis indicates a trend of weaker negative SW CRE values i.e., less cooling, and a trend of weaker positive values LW CRE values, i.e., less warming.
- A large contribution ($\sim 2 / 3$) to SW CRE anomalies comes from fewer and optically thinner clouds, while LW CRE anomalies are dominated by overcast and clear-sky flux changes (i.e. CRK anomalies), as those due to cloud property anomalies largely cancel out.
- Overcast (OVC) and clear sky (CLR) flux anomalies merit further investigation. LW outgoing fluxes increase for OVC and decrease for CLR (decreased LW CRE); SW outgoing fluxes decrease more for OVC than CLR (decreased SW CRE).

Backup Slides

Daily dataset

CERES FBCT CRs

$$
\begin{array}{llllllll}
0 & 1.3 & 3.6 & 9.4 & 23 & 60 & 150
\end{array}
$$

[^1]
$$
\Delta C R E=\sum_{k=0}^{K}\left(\bar{f}_{k} \Delta C_{k}+\Delta f_{k} \bar{C}_{k}\right)\left(\bar{F}_{k}^{o v c}-\bar{F}_{k}^{c l r}\right)+\sum_{k=0}^{K} \bar{f}_{k} \bar{C}_{k}\left(\Delta F_{k}^{o v c}-\Delta F_{k}^{c l r}\right)
$$

Check RFO trends for FBCT CRs, $\boldsymbol{\Delta} \boldsymbol{f}_{\boldsymbol{k}}$ (To confirm FBCT CRs have similar trends with MODIS CRs)

$$
\Delta C R E=\sum_{k=0}^{K} \bar{f}_{k} \Delta C_{k} \overline{C R K}_{k}+\sum_{k=0}^{K} \bar{f}_{k} \bar{C}_{k} \Delta C R K_{k}+\sum_{k=0}^{K} \Delta f_{k} \bar{C}_{k} \overline{C R K}_{k}
$$

Values from AGU poster
CR1 CR2 CR3 CR4 CR5 CR6 CR7 CR8 CR9 CR10 CR11

	Daily dataset		Monthly dataset	
	$\Delta C R E\left(=\sum_{k=0}^{K} \Delta C R E_{k} f_{k}\right)$	(2) $\times(3)+(4) \times(5)+(6)$	$\triangle C R E$	(2) \times (3) + (4) \times (5)
SW	0.28	0.29	0.35	0.30
LW	-0.50	-0.45	-0.56	-0.54

$\stackrel{1}{1}$
\triangle CRE
$0.35 \mathrm{~W} / \mathrm{m}^{2} /$ decade

\approx

(2) \times (3)
 $\Delta C F \times \overline{C R K}$

$0.19 \mathrm{~W} / \mathrm{m}^{2} /$ decade

(4)
\times
\times
(5) $\Delta C R K$

(2) $\times 3$

${ }^{-0.15} \mathrm{CF}$ anomaly trend $\begin{gathered}-0.1 \\ (\% / \text { } / \text { decade })\end{gathered}$
$\Delta \boldsymbol{C}_{\boldsymbol{t o t}}=-0.3 \% \mathrm{decade}^{-1}$

$0.19 \mathrm{~W} / \mathrm{m}^{2} /$ decade

LW

$\begin{array}{lllll}-0.1 & -0.06 & -0.02 & 0.02 & 0.06 \\ & \text { anomaly trend }\left(\mathrm{W} / \mathrm{m}^{2} / \text { decade }\right)\end{array}$

Ts increase

q increase

[^0]: $\left.\begin{array}{ccccc}-0.1 & -0.06 & -0.02 & 0.02 & 0.06\end{array}\right)$

[^1]: Cloud fraction (\%)

