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An increasing EEl is a robust prediction from climate models

given anthropogenic forcings over the last 150 years
« Direct link between EEI and climate sensitivity (modulo forcings)

Impact expected to be seen in Ocean Heat Content rise but

systematic issues have taken two decades to resolve!
- Measurement shifts (CTDs/XRF/Argo)
- Data sparsity in southern ocean + pre-1970s

CERES data is now long enough to provide independent
checks on rate of change AND SW/LW split

- But comparisons with models are still in flux

* Net changes seem to match, but LW/SW split post 2015 is very different
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First transient GCM
simulations (1984+)

Given anthropogenic forcings,
EEI initially increases, and
then decreases as (if) new
equilibrium is achieved

Magnitude of EEI and time to
equilibrium depends on
climate sensitivity (Hansen et
al., 1985)
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@/ How would we know we were getting the
answer right for the right reasons?
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We also stress the importance of measuring the rate of
Poren ot T IO o e time scale. of « few decades
there is not necessarily a great difference in the sur-
face temperature response for a low climate senitivity (say
1.5°-2°C for doubled CO,) and a high climate sensitivity
(say 4°-5°C for doubled CO,). However, the larger climate
sensitivity leads to a higher rate of heat storage in the
ocean. Since theoretical derivations of climate sensitivity
depend so sensitively on many possible climate feedbacks,
such as cloud and aerosol optical properties [Somerville and
Remer, 1984; Charlson et al., 1987], the best opportunity for
major _improvement in our understanding of climate sensi-
crossing the major oceans. In principle, the measurements
would only be needed at decadal intervals, but continuous
measurements are highly desirable to average out the effect

of local fluctuations. Hansen et al (1988)
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In 1999, the OHC rise was a key point in
global warming ‘debate’

Space Studies

6. Planetary disequilibrium

Hansen: Earth 1s out of radiative equilibrium with space

by at least approximately 0.5 W/m? (absorbing more
energy than it emits).

Comments: This is the most fundamental measure
of the state of the greenﬁouse effect. Because the
Isequilibrium 1s a product of the long response time
of the climate system, which in turn is a strong
function of climate sensitivity, confirmation of the
disequilibrium provides information on climate
sensitivity and an indication of how much additional

global warming is "in the pipeline" due to gases
already added to the atmosphere.



But there were big issues!
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State of observational databases:

 incomplete digitization, undeveloped methods,
large spatial gaps, multiple measurement systems

Coupled climate modeling:

- Deep ocean drifts due to insufficient spin up,
energy leaks (non-physical sinks/sources),
uncertain forcings

« Connection between EEI and OHC uptake
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@/ Validation?
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Levitus et al (2001) show rise in OHC, but with large decadal variability
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AchutaRao et al (2006) found that not even spatial sampling in climate
models could generate the inferred decadal variability from the obs.
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Levitus et al (2008) adopted corrections for XBT artifacts reduces
variance. OHC rise clearer (also Domingues et al, 2008).



Beginning of Argo + GRACE era!
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OHC Anomaly (10 J)

Ocean Heat Content (1975-1989 baseline)
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By AR5, clearer picture had emerged

Comparison of
CMIP3 models to
ocean data in
2012



Goddard Institute for Ocean heat uptake estimates over time
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@ All good, no?
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YRS CERES observations show dramatic
soasaramsier SNIFLS IN SW and LW TOA
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5 —— CERES (Observations) AM4 PSST AM4 PSST+ERF ° Big decre aseS in reflected SW

] . * Increases in outgoing LW
*  AMIP/CMIP models have

some coherence
* Best match with GISS-E2.1
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Net trends plausible match to
swaamsiter Q1SS climate model expectations
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TOA Radiative Trend (Net, All sky)
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But LW/SW split in trends are way off!
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NH SW and LW TOA All-Sky Trends
©
o
. ® CERES
%, * OMA
NS
NS MATRIX
< 9, Ensemble Means
o &
7
\\6@
AN /
\QO
\\C:G
N
e [ ]
[ ]
o A
o
[
C\! [ ]
<
.\
< N
<1 NH
g Obs
| | | | | |
-0.2 0.0 0.2 0.4 0.6 0.8 1.0

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

Some difference between
hemispheres...

SH SW and LW TOA AllI-Sky Trends

SW Trends (W/m2/dec)

N m CERES
X * OMA
\\/\LQO‘ II\EIIATRIX
NG nsemble Means
\?f,
° \’%5@{9
\‘?C’@
A o
[ )
e AN
\.\
CERES
SH Obs‘
T T T T T T 1
-0.2 0.0 0.2 0.4 0.6 0.8 1.0



Goddard Institute for

Space Studies
AMIP runs and CERES observations (Shortwave, All sky)
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Are aerosols to blame?
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Aerosol forcing anomalies
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What’s happening?
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Function of ENSO, COVID, aerosol changes?

Problem: AMIP runs in CMIP6 only go to 2014
and use out-of-date SSTs

- SW changes incl. cloud feedbacks, WV,
aerosols and aerosol-cloud interactions

» LW changes incl. cloud feedbacks and
surface emission change w/global warming

=> CERESMIP




@/ CERESMIP proposal
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Use AMIP-style runs from
1990 to present (cheap!)

Update SST to HadISST
v2.3 (or better) (currently |
to Jun 2020) (Not what is s

S

currently in Inputs4MIPs)
Update CEDS to

v2021_4_21 (to end
2019) (next version will
include 2021)



Requested diagnostics/Timeline
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Standard CMIP6 DECK output + COSP
Cloud simulator

Tier 1: All-forcing run

Tier 2: Single forcings/Varying plausible
aerosol input

Runs to end-2019 can be done now.

Runs including 2020+2021 need to wait on
Hadley Centre/CEDS. Maybe by end 20237
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Predictions of an increasing net heat imbalance dating from

the 1980s were correct
- Implies that warming is being driven by external forcing
- Climate sensitivity is non-negligible

New CERES results pose a challenge to existing models

New assessment of last two decades is needed.

« Updates to SST/SIC products

- Updates to aerosol and SLCF emissions

 Possible constraints on aerosol changes and cloud feedbacks.



