

FLASHFlux Working Group Status: Transition to NOAA-20 and Future Upgrades

Paul Stackhouse (NASA LaRC)

PC Sawaengphokhai, Hunter Winecoff, and Jay Garg (SSAI)

CERES Team members: Katie Dejwakh and Dave Doelling (LaRC), Walt Miller, Pam Mlynczak, Victor Sothcott, Nelson Hillyer, and others (SSAI)

POWER Team: Bradley MacPherson and Christopher Higham (Booz-Allen-Hamilton)

Atmospheric Science Data Center Team (SSAI)

CERES FLASHFlux Overview

FLASHFlux Overview

- Uses CERES based production system through inversion (w/ quarterly calibration updates projected forward)
- Running 3-day TISA utilizing morning and afternoon orbiters

FLASHFlux Latency Objectives

- SSF products within 3-4 days
- Global 1x1 daily averages from FF TISA; goal: 5-7 days latency

FLASHFlux Uses

- Primarily used for applied science and education (i.e., POWER and Globe Clouds)
- Supports also QC for selected missions (e.g., NOAA NESDIS)
- TOA gridded fluxes; normalized to TOA EBAF for annual "State of the Climate" assessments.

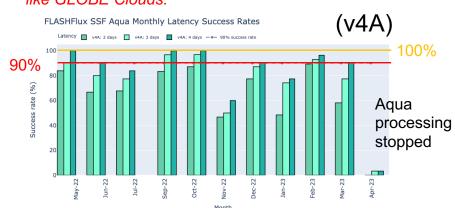
FLASHFlux Operational Status

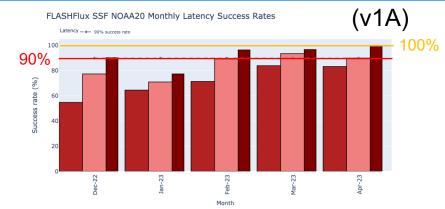
FF Production System Updates:

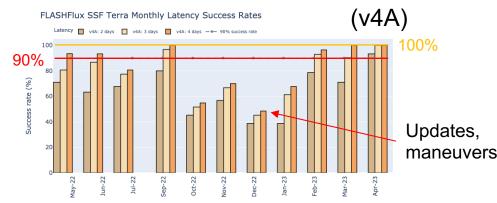
- Began NOAA-20 FLASHFlux SSF (v1A; 3/1/23 back to 10/1/22)
- Transitioned TISA from Terra+Aqua to Terra+NOAA-20 (v4B; processed back to 11/1/23)

FF Production status:

- Current Status:
 - SSF Terra: 5/4/22; SSF Aqua: 3/31/23 (stopped on March 31)
 - SSF NOAA-20: began 3/1/23; currently 5/4/23 (processed back to 10/1/22)
 - TISA (Terra+NOAA-20): 5/2/23
- Updated calibration coefficients received; promoted as cc change effective 4/1/23

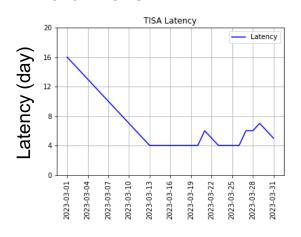


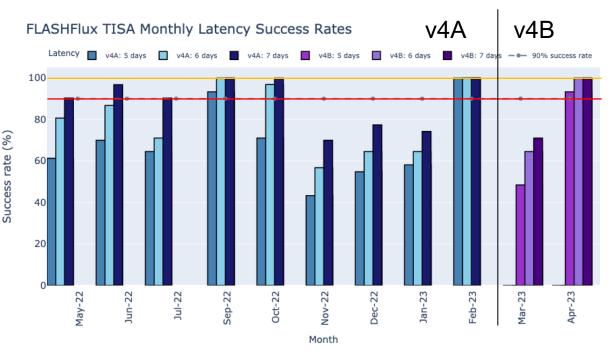

FLASHFlux SSF Latency Assessment


Success rate (%) of time data archived within 2, 3, or 4 days of observation

Lags due to: maneuvers/satellite issues, ASDC updates/outages, ASDC Dropbox/Darkhorse, GSFC LAADS and/or SIPS

SSF utilized for operational satellite algorithm comparisons (i.e., NOAA GOES ABI); Applications like Solar Irradiance Forecasting and Educational applications like GLOBE Clouds.





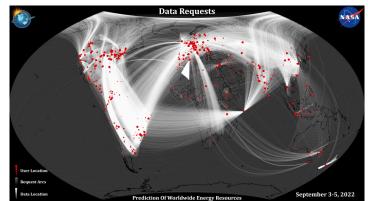
TISA Latency Statistics (v4A/v4B)

v4A success rates for TISA to be archive in 5, 6 or 7 days after observation

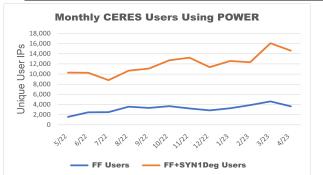
v4B began production in March 2023

FLASHFlux Data Delivery via POWER Web Services Portal (2022/05/01 to 2023/04/30)

CERES Data Orders Delivered via POWER < 3 weeks latency (FLASHFlux Data)


	Total	Monthly	Avg. Last 3 Months
Unique	~30.8 K	~3.2 K	~4.1 K
Users IPs	(12%)	(13%)	(13%)
Requests	~28.8 M	~2.4 M	~3.2 M
	(26%)	(25%)	(31%)

CERES Data Orders Delivered via POWER including SYN1Deg and FLASHFlux data


	Total	Monthly	Avg. Last 3 Months
Unique	~123.6 K	~12 K	~14.3 K
Users IPs	(50%)	(49%)	(46%)
Requests	~ 66.9 M	~5.58 M	~5.14 M
	(59%)	(59%)	(50%)

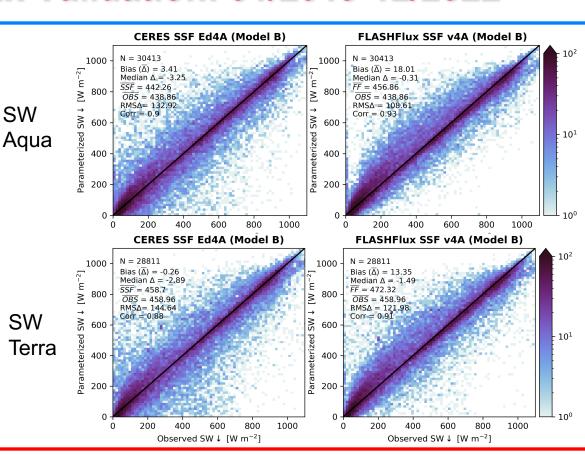
(includes SYN1Deg from Sep 2001 through latest month released)

Dot density map showing locations of users (red) and data request locations (white). Brighter colors show larger frequency at that location.

Accumulated over 3 days

Total FF+ SYN1Deg users 50-60% increase

FF users ~2X during last year

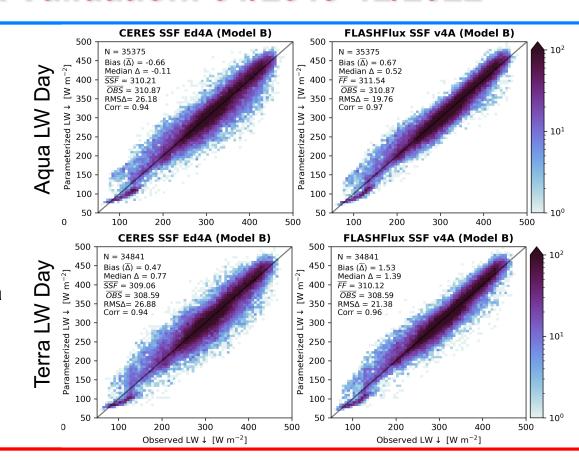


FF SSF SW Flux Validation: 01/2019-12/2022

Overpass SW flux validation with BSRN measurements:

- Left CERES SSF (Model B)
- Right FLASHFlux SSF (Model B)
- Top Aqua, Bottom Terra

Both FLASHFlux SW Aqua and Terra radiative fluxes show larger bias but better RMS than CERES SSF (both biases < 5%; RMS < 27%)

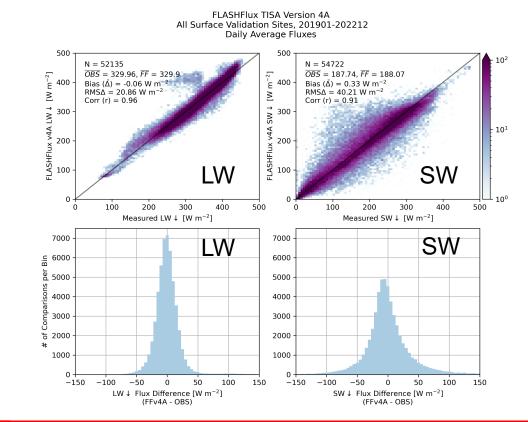


FF SSF LW Flux Validation: 01/2019-12/2022

Overpass LW daytime flux validation with BSRN measurements:

- Left CERES SSF (Model B)
- Right FLASHFlux SSF (Model B)
- Top Aqua, Bottom Terra

Both FLASHFlux SW Aqua and Terra radiative fluxes show equivalent biases but FF a better RMS than CERES SSF (both biases < 1%; RMS's < 7%)


FLASHFlux TISA Validation: Surface Fluxes

Ensemble FLASHFlux Version4A LW and SW Daily Average Comparisons to Surface Measurements (01/2019-12/2022)

LW: Bias -0.01 W m⁻² (<< 1%) RMS 20.9 W m⁻² (~7%)

SW: Bias 0.3 W m⁻² (<< 1%) RMS 40.2 W m⁻² (~22%)

Histograms show peaked, relatively symmetric distributions, median bias is negative for LW, positive for SW

Assessing FLASHFlux with NOAA-20 (FM-6)

FF NOAA-20 (v1A) began operations 10/1/22

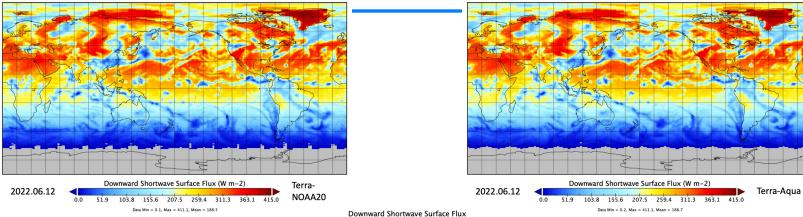
FF TISA Terra+NOAA20 (v4B) began operations 3/10/23

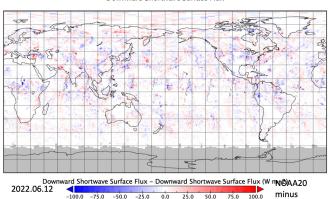
SSF Validation: CERES Ed4 vs FF v4B

NOAA-20 SSF Surface SW between CERES SSF Ed1B and FF SSF v1A (Oct – Dec 2022)

- SW downwelling fluxes show very similar statistics with RMS ~22-23%
- LW downwelling fluxes very similar with RMS <7%

CERES SSF Ed1B (Model B) FLASHFlux SSF v1A (Model B) N = 1239N = 12391000 Bias $(\overline{\Delta}) = 2.62$ Bias $(\overline{\Delta}) = 2.38$ Median $\Lambda = -0.73$ Median $\Delta = -6.16$ $\overline{SSF} = 410.61$ $\overline{FF} = 410.85$ $\overline{OBS} = 408.23$ $\overline{OBS} = 408.23$ RMS Δ = 91.3 $RMS\Delta = 95.91$ Corr = 0.93Corr = 0.94SW 600 -10^{1} **Parameterized** 400 600 800 1000 400 600 800 1000 Observed SW ↓ [W m⁻²] Observed SW ↓ [W m⁻²] CERES SSF Ed1B (Model B) FLASHFlux SSF v1A (Model B) N = 1310N = 1310Bias $(\overline{\Delta}) = 0.52$ 450 Bias $(\overline{\Delta}) = -0.75$ Median $\Lambda = -0.56$ Median $\Lambda = 1.21$ $\overline{SSF} = 311.87$ $\overline{FF} = 310.59$ $\overline{OBS} = 311.34$ $\overline{OBS} = 311.34$ $RMS\Delta = 19.75$ $RMS\Delta = 20.79$ Corr = 0.94Corr = 0.93↑ MJ 300 300 Parameterized L 10¹ 250 200 150 100 100 100 200 300 400 500 100 500 200 300 400 Observed LW ↓ [W m⁻²] Observed LW ↓ [W m⁻²]


SW


Surface SW Down

Downward Shortwave Surface Flux

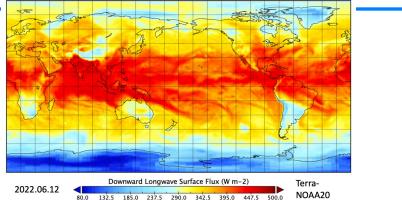
Downward Shortwave Surface Flux

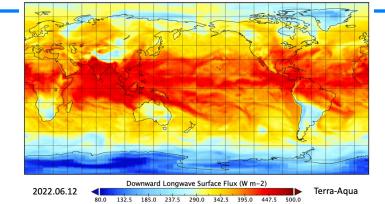
NOAA20 + Terra

Data Min = -155.5, Max = 132.8, Mean = 0.1

Aqua

Aqua + Terra

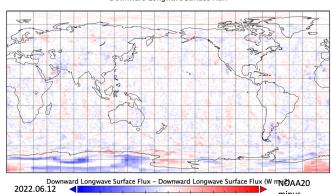

Differences Terra-NOAA20 minus Terra-Aqua



Surface LW Down

Downward Longwave Surface Flux

Downward Longwave Surface Flux



Data Min = 82.8, Max = 496.3, Mean = 355.4

Data Min = 83.2, Max = 481.0, Mean = 355.2 Downward Longwave Surface Flux

NOAA20 + Terra

-50.0 -37.5 -25.0 -12.5 0.0 12.5 25.0 37.5 50.0

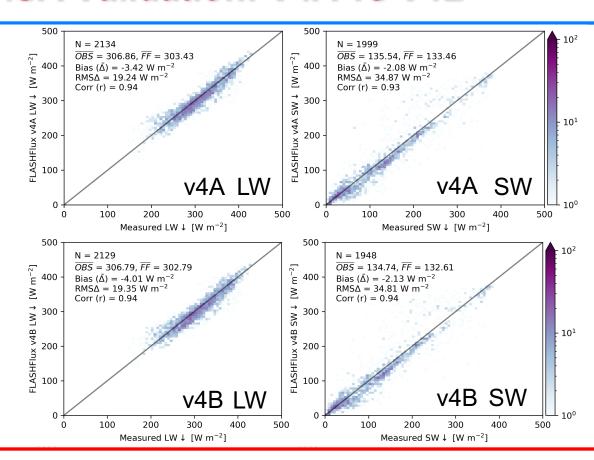
Data Min = -31.0, Max = 26.1, Mean = -0.3

minus

Aqua

Differences Terra-NOAA20 minus Terra-Aqua

Aqua + Terra

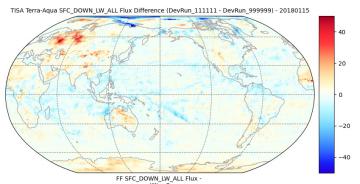

FLASHFlux TISA Validation: V4A vs V4B

Comparison Daily Averaged Surface LW (left) and SW (right) of v4A (top) and v4B (bottom) (Oct – Dec 2022)

Both downwelling fluxes show very similar statistics between v4A and v4B:

LW RMS's: ~6%

SW RMS's: ~25%


Assessing GEOS-IT: All-Sky Surf LW Down Differences (Jan, Jun 15, 2018)

Jan All-Sky Surf LW Down (w/ GEOS-IT – FP-IT)

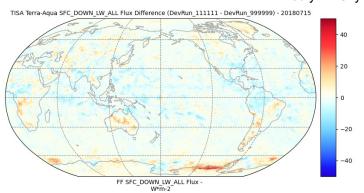
Units: W m⁻²

Snow/Ice Statistics

6.3311 4.7145

Global Statistics

Diff Stats	Mean	StdDev	Mean Abs Difference
Global	-0.2022	5.007	3.3027
60-90N	-0.6161	8.9421	5.545
30-60N	0.8929	5.5597	3.5622
0-30N	-1.3146	4.5707	3.255
0-30S	-1.0147	4.5295	3.3025
30-60S	0.3348	2.684	1.8724
60-90S	2.9375	3.8006	2.9726


Land Statistics

Diff Stats	Mean	StdDev	Mean Abs Difference
Global	1.0896	5.8561	4.2557
60-90N	2.1292	6.1036	4.1667
30-60N	2.7896	5.99	4.0231
0-30N	0.5619	6.0614	4.7003
0-30S	-0.0866	5.6067	4.2508
30-60S	1.4698	4.3045	3.3297
60-90S	1.9914	2.8992	2.0752

Ocean Statistics

ff its	Mean		Mean Abs Difference	Diff Stats	Mean	StdDev
bal	-1.0672	3.3112	2.4463	Global	1.3466	8.1657
90N	0.1668	2.0783	1.4767	60-90N	-1.1343	9.7683
50N	-1.2261	2.8224	2.1052	30-60N	1.9059	7.0955
0N	-2.3038	3.1116	2.3095	0-30N	-	
0S	-1.3694	3.9864	2.9847	0-30\$	-	-
50S	0.2371	2.4718	1.741	30-60S	-	
90S	0.5652	1.4897	1.1012	60-90S	4.8224	4.0603

July All-Sky Surf LW Down (w/ GEOS-IT - FP-IT)

Global Statistics

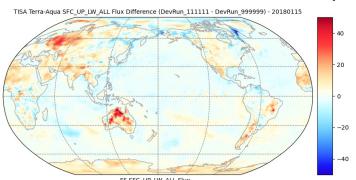
_			
Diff Stats	Mean	StdDev	Mean Abs Difference
Global	-0.2574	4.1239	2.8615
60-90N	0.9618	3.1469	2.2283
30-60N	-0.0383	3.5326	2.5815
0-30N	-1.7314	3.7796	2.817
0-30S	-0.6223	4.3731	3.0701
30-60S	0.2173	2.532	1.7782
60-90S	3.4908	6.5413	4.4537

Land Statistics

Diff	Mean	Ch.ID	Mean Abs
Stats	iviean	Stabev	Difference
Global	0.2018	4.8701	3.6308
60-90N	0.8823	3.2476	2.3917
30-60N	0.1595	4.1189	3.1417
0-30N	-1.3231	4.751	3.6562
0-305	1.079	6.1544	4.7405
30-60S	1.9123	4.2945	3.2095
60-90S	4.7377	5.3338	3.9246

Ocean Statistics

iff ats	Mean		Mean Abs Difference	Diff Stats	Mean
bal	-0.9301	2.934	2.1847	Global	3.1215
90N	-0.023	1.5748	1.0871	60-90N	1.6497
60N	-0.3037	2.5253	1.8315	30-60N	0.2578
30N	-1.9465	3.1282	2.3705	0-30N	
30S	-1.2713	3.232	2.4018	0-30S	
-60S	0.028	2.1429	1.6073	30-60S	1.9391
-90S	1.007	1.9178	1.3973	60-90S	3.6415


Snow/Ice Statistics

Diff Stats	Mean	StdDev	Mean Abs Difference
Global	3.1215	6.2475	4.2442
60-90N	1.6497	3.3818	2.3853
30-60N	0.2578	4.4484	3.6579
0-30N			
0-30S			
30-60S	1.9391	5.2355	3.6273
60-90S	3.6415	6.8675	4.6902

Assessing GEOS-IT: All-Sky Surf LW Up Differences (Jan, Jun 15, 2018)

Jan All-Sky Surf LW Up (w/ GEOS-IT – FP-IT)

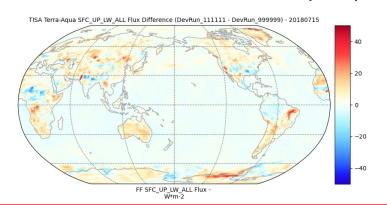
Global Statistics

Diff Stats	Mean	StdDev	Mean Abs Difference
Global	0.7063	5.781	3.7996
60-90N	-0.259	8.6218	6.131
30-60N	1.1119	6.606	4.6927
0-30N	-0.0823	5.4453	3.7099
0-30S	0.7684	5.726	3.3114
30-60S	0.5183	3.4994	2.2664
60-90S	3.9171	4.7563	3.9886

Land Statistics

Diff Stats	Mean		Mean Abs Difference
Global	3.6851	8.1257	6.1329
60-90N	3.0366	7.1518	5.276
30-60N	4.3661	7.177	5.3213
0-30N	3.5397	7.7693	6.404
0-30S	3.2538	9.7663	6.9855
30-60S	4.2934	7.2743	5.6802
60-90S	3.0629	4.4838	3.1943

Ocean Statistics


Units: W m⁻²

Diff Stats	Mean	StdDev	Mean Abs Difference
Global	-0.7706	2.4263	1.8183
60-90N	-0.8166	2.157	1.3181
30-60N	-1.9873	1.7319	1.2351
0-30N	-1.9916	1.697	1.1981
0-30S	-0.1794	2.3799	1.8121
30-60S	0.1928	2.7212	1.9231
en one	0.3300	1 // 210	1 1 5 1 0

Snow/Ice Statistics

Diff Stats	Mean	StdDev	Mean Abs Difference
Global	2.0713	8.5242	6.363
60-90N	-0.552	9.1823	6.8356
30-60N	1.9016	8.454	6.2583
0-30N			
0-30S			
30-60S			
60-90S	6.7714	4.4966	3.6579

July All-Sky Surf LW Up (w/ GEOS-IT – FP-IT)

Global Statistics

n Abs
rence
3.124
3.1847
3.7888
2.457
2.8057
1.1776
5.2586

Land Statistics

Diff Stats	Mean	StdDev	Mean Abs Difference
Global	2.5901	6.9393	5.1399
60-90N	2.8004	4.305	3.2776
30-60N	3.3341	6.6321	4.829
0-30N	0.4513	7.6833	5.3946
0-30S	3.7198	7.4844	6.1353
30-60S	3.454	4.9894	4.2688
60-90S	4.0499	6.5	4.9848

Ocean Statistics

Diff Stats	Mean	StdDay	Mean Abs Difference
วเสเร	IVICALI		Dillerence
Global	-0.9836	1.3433	0.9172
50-90N	0.6914	1.6645	1.1771
30-60N	0.5105	2.1131	1.6092
0-30N	-1.2703	0.9657	0.7409
0-30S	-1.5402	0.8372	0.6215
30-60S	-0.9322	0.9449	0.7003
60-90S	-0.3856	0.8113	0.5746

Snow/Ice Statistics

Diff			Mean Abs
Stats	Mean	StdDev	Difference
Global	2.8504	6.9813	5.0604
60-90N	3.3105	5.5042	3.7406
30-60N	3.4584	5.058	4.403
0-30N	-	-	
0-30\$	-	-	
30-60S	-0.5793	7.022	5.1913
60-90S	2.8197	7.3907	5.5166

Assessing GEOS-IT: All-Sky Surf SW Down Differences (Jan, Jun 15, 2018)

Mean Abs

0.0559

0.2957

0.6076

0.9283

0.6055

0.5311

0-30N

0-305

30-609

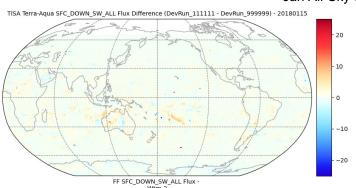
60-90S

StdDev Difference

1.239

0.104

0.5979


1.3674

1.655

0.9664

0.7356

Jan All-Sky Surf SW Down (w/ GEOS-IT - FP-IT)

Global Statistics

Mean

0.0906

0.3564

0.6011

0.3453

-0.1186

Diff

Stats

60-90N

30-60N

0-30N

30-60S

Land Statistics Diff Stats Mean

0.638

Mean	StdDev	Mean Abs Difference	S
0.3892	1.4859	0.7375	GI
0.0224	0.1725	0.0886	60
0.1038	0.5725	0.3273	30
0.3553	1.1154	0.7458	0-
0.7061	2.2209	0.9846	0
0.630	1 0765	1.0120	20

Ocean Statistics

Mean

0.1675

0.3566

0.3201

0.0455

StdDev

0.064

0.3832

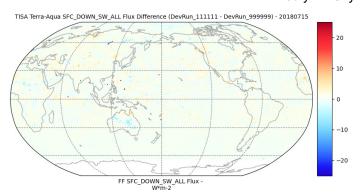
1.4832

1.378

0.8386

0.4541

0.3335


1103	- 011	Onownee Otalistics			
Mean Abs Difference	Diff Stats	Mean		Mean Abs Difference	
0.6223	Global	-0.1166	0.7924	0.3992	
0.0433	60-90N	0.0047	0.0957	0.0535	
0.2686	30-60N	-0.0629	0.8574	0.28	
0.535	0-30N	-	-		
0.9057	0-30S	-	-		
0.5641	30-60S			-	

Snow/Ice Statistics

Units: W m⁻²

60-90S

July All-Sky Surf SW Down (w/ GEOS-IT – FP-IT)

Global Statistics

Diff Stats	Mean	StdDev	Mean Abs Difference
Global	0.3463	1.3742	0.6158
60-90N	0.2525	1.4276	0.8214
30-60N	0.5452	1.1358	0.7648
0-30N	0.3732	2.1917	0.726
0-30S	0.3601	0.864	0.5889
30-60S	0.1551	0.3576	0.2343
60-90S	-0.0103	0.2188	0.0727

Land Statistics

Diff Stats	Mean	StdDev	Mean Abs Difference
Global	0.4401	1.2656	0.8032
60-90N	0.3522	1.6706	0.9287
30-60N	0.6271	1.2434	0.851
0-30N	0.4247	1.2375	0.7941
0-30S	0.292	1.135	0.7551
30-60S	0.1985	0.672	0.4263
60-90S	-0.0241	0.1411	0.0741

Ocean Statistics

Diff tats	Mean	StdDev	Mean Abs Difference	Diff Stats	М
lobal	0.3111	1.4428	0.5094	Global	0
-90N	0.2302	0.8498	0.5164	60-90N	0
-60N	0.4303	0.9533	0.631	30-60N	2
-30N	0.3459	2.5569	0.687	0-30N	
-30S	0.3861	0.7331	0.5279	0-305	
)-60S	0.1525	0.3094	0.2145	30-60S	0
)-90S	0.0183	0.0868	0.0572	60-90S	-0

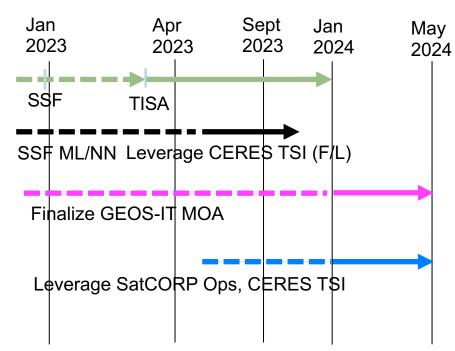
Snow/Ice Statistics

-0.2578 0.8872

0.6803

Diff Stats	Mean	StdDev	Mean Abs Difference
Global	0.0499	0.8537	0.5145
60-90N	0.0523	0.9926	0.7184
30-60N	2.2652	1.8424	1.3928
0-30N		-	
0-30S		i	
30-60S	0.0127	0.3117	0.1875
60-90S	-0.0246	0.272	0.0822

FLASHFlux Future Production Strategy


- Both Terra and Aqua are scheduled to be turned off in 2023; production system must be modernized and adjusted to continue production
- Current Plan:

FF NOAA-20 to Operations for SSF (v1A) and add to TISA (v4B)

Upgrade SSF/TISA RT algorithms

Update to GEOS-IT (Evaluate aerosols)

Processing GEO for FF (replace lost morning orbit)

FLASHFlux Summary

Production with NOAA-20 SSF and TISA v4B Begun

- Operational FF NOAA-20 v1A SSF (11/1/22) and TISA v4B (since Jan 1, 2019); Aqua SSF ceased 3/31/23
- SSF Terra/NOAA-20 through 5/4; TISA through 5/2
- New FF Gain+Spectral coefficients beginning April 1st, 2023.

Validation and Assessment

- FLASHFlux SSF surface fluxes relative to BSRN for 01/2019 through 12/2022
- TISA Daily averages relative to BSRN for Jan 2019 through Dec 2022 (48 months)

FLASHFlux Modernization and Updates

- NOAA-20 SSF data product; Goal Nov 2022; completed
- Terra+NOAA-20 TISA data product; Goal Mar 2023; completed
- New GEOS-IT sample data; first cut comparisons to FP-IT (still assessing); Goal Apr 2023; done
- ML non-linear Tree based algorithms for future FF SSF data products; Goal Oct 2023
- Migrate configuration to NOAA-20 + GEO/GEOS-1 (leveraging Ed5 TSI); Goal Dec 2023

• FLASHFlux Information & Data Provision Through ...

- CERES web site and subsetter both SSF and TISA, ASDC (via EarthData) and POWER
 - FF+Syn1 POWER Distribution in last year: ~124K unique IPs; > 64M orders; orders >44% low latency
- 2022 BAMS State of the Climate TOA Flux reports submitted

FLASHFlux Web Sites

https://ceres.larc.nasa.gov/data/#fast-longwave-and-shortwave-flux-flashflux

Data also served through https://power.nasa.gov