The Version 2 VIIRS+CrIS Fusion Radiance products

E. Eva Borbas, Elisabeth Weisz, W. Paul Menzel, Chris Moeller, Geoff Cureton*, Greg Quinn*, and Bryan Baum**

Space Science and Engineering Center, University of Wisconsin-Madison
*NASA Atmosphere-SIPS
**Retired

CERES STM, April 26-28, 2022
Goal

- The VIIRS+CrIS Fusion Radiance (FSNRAD) products have been created to provide a path for continuity of products based on the Terra, Aqua, SNPP, and NOAA-20 platforms.

- *Why is this work important?* MODIS has three channels sensitive to CO$_2$ in the 4.5 µm CO$_2$ band, four channels in the broad 15 µm CO$_2$ band, 2 channels sensitive to H$_2$O near 6.7 µm, and an ozone channel near 9 µm. VIIRS has none of these IR absorption bands. The lack of the CO$_2$ and H$_2$O channels results in a degradation of the accuracy of the cloud mask especially at night in high latitudes, other cloud products (cloud top pressure/height and thermodynamic phase) and the moisture products (total precipitable water vapor, upper tropospheric humidity).

- We addressed this restriction by constructing similar Aqua MODIS IR band radiances for VIIRS based on a fusion method that uses collocated VIIRS and CrIS data.
Imager+Sounder Spatial Fusion Schematics

Step 1
- Imager geolocation
- HIRES Imager radiances (imager bands X and Y)
- Sounder geolocation
- Collocation and Geographic Averaging
- Sounder geolocation
- LORES Imager radiances (imager bands X and Y)
- K-D Search Tree
 - Indices of N closest sounder FOVs (for each imager pixel)
 - N=5

(Bentley, 1975)

Step 2
- LORES Hyperspectral Sounder Retrieval Product
- Average N Sounder Products (for each imager pixel)
- HIRES Sounder Retrieval Products

LORES/HIRES ... low/high spatial resolution
Imager+Sounder Radiance Fusion Example

- Imager+sounder radiance fusion (Ref 1) applied to VIIRS+CrIS to construct missing VIIRS CO\(_2\) and H\(_2\)O absorption bands (i.e., MODIS-like bands).

- Can be applied to various instrument pairs (e.g., AVHRR+IASI, AVHRR+HIRS, VIIRS+TROPOMI, ABI+CrIS)

Status of the VIIRS+CrIS FSNRAD products

- **V2 (2.0.0dev3) released at NASA LAADS DAAC:** March 8, 2022
- **DOI:** 10.5067/VIIRS/FSNRAD_L2_VIIRS_CRIS_SNPP.002

- **Subsetter products are available at A-SIPS:** https://sips.ssec.wisc.edu/#/products/availability;id=14372

<table>
<thead>
<tr>
<th>Product Name</th>
<th>Description</th>
<th>Available at</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSNRAD_L2_VIIRS_CRIS_SNPP</td>
<td>S-NPP/VIIRS Fusion Radiances</td>
<td>LAADS DAAC</td>
</tr>
<tr>
<td>FSNRAD_L2_VIIRS_CRIS_NOAA20</td>
<td>NOAA20/VIIRS Fusion Radiances</td>
<td>LAADS DAAC</td>
</tr>
<tr>
<td>FSNRAD_L2_VIIRS_CRIS_SS_SNPP</td>
<td>S-NPP/VIIRS Subsetted Fusion Radiances</td>
<td>Atmosphere-SIPS</td>
</tr>
<tr>
<td>FSNRAD_L2_VIIRS_CRIS_SS_NOAA20</td>
<td>NOAA20/VIIRS Subsetted Fusion Radiances</td>
<td>Atmosphere-SIPS</td>
</tr>
</tbody>
</table>

- **Note for SNPP:** CrIS anomaly in LW data
 - May 21 –July 12, 2021: fill value for Band 30-36 (anomaly of CrIS LW channels)
 - July 14, 2021 – fill value for Band 27, 28, B30-36 restored (Side 1 -> Side 2)
FSN RAD Version 2 updates:

- Updated to current VIIRS & CrIS calibration (V3.0.0)
- **New K-D tree**: MU (empirical, band-specific scaling factor) is eliminated by scaling radiances (additionally to lat and lon) in the KD tree search
- **Radiance is replaced with the BTdiff** (11-12 micron) for Band 27 and Band28 (differences are more sensitive for the atmospheric layer instead of the surface (individual channels)).
- **QC improvement**: VIIRS granule quality check is done by scanline now, so partially good granules can be processed. Before the whole granule was checked at once, and only fully best quality granule was processed.
 - Granules with BB WUCD operation and lunar calibration are processed now.
- **A new CrIS-VIIRS collocation implementation** has been developed that provides two main improvements:
 - Scans with missing geolocation data are now simply ignored instead of causing whole-granule failures.
 - False negative allocation of VIIRS pixels in the AIRS FOV is fixed.

The yield for the fusion radiance product is now greater than 99.9% for NOAA20.
Collocation fix

The old collocation code missed VIIRS pixels that should have been identified as residing within a CrIS FOV (false negatives).

The image shows an area where the false negative problem was especially prominent. Each small white rectangle is a VIIRS pixel that was not identified in the old collocation code.

Overall, an average granule was missing a bit under 1% of collocated VIIRS pixels (for a sense of scale the new code has 189 false negatives for all of August 2020, while the old code had about 286 million).
SNPP Geolocation error

- Currently the VIIRS geolocation (V002 (viirs L1_version=3.1.0) for the last scan in each 2-hour block is failing, meaning the granule timestamps: 01:54, 03:54 05:54 ...

- A buffer is being added to the end of the L0 input for the Kalman filter to fix this.

- V2 Fusion still meets quality expectations.
Decreasing surface effect in WV bands
Assessment of Product Quality

SNPP and NOAA20 fusion radiance products are compared directly with Aqua/MODIS measured radiances.

Provide:
- Sanity check
- Uncertainty

SNO requirements:
- Scan angle < 50
- VIIRS fully contain within the MODIS
- Looking the same ground point within 20 min
- High confidence clear
Future plans:

- Adjust band 28 – no effect on the FSNRAD SS subsetter products
- Continue monitoring fusion radiance quality with MODIS SNOs

Next Presentation:
August 8-12, 2022, Madison, WI
Joint 2022 NOAA Satellite Conference and the 25th Conference on Satellite Meteorology, Oceanography

References: