Updates on ice cloud optical property development and study of cloud radiative effects with the use of spherical harmonic functions

> James Coy, Masanori Saito, Jiachen Ding, Ping Yang Texas A&M University, Department of Atmospheric Sciences CERES Meeting April 26-28 2022

		a de la compañía de l	
		-	
		*	
N.	200		A loss

Current Progress Overview

- Full resolution database of new Two-Habit Model (THM-new) finalized.
 - Implemented accurate Physical Geometric Optics Method (PGOM) backscattering calculations to shortwave wavelength regime (94 wavelengths).
 - Over 1 year computational effort (January 2021 February 2022).
 - Estimated Texas A&M HPRC supercomputer service unit (SU) cost:

 $(80 \ particles) \times (94 \ wavelengths) \times (189 \ sizes) \times (\sim 5 \ SU \ per \ job) = \sim 7,000,000 \ SU \ (822 \ years)$

 \odot Added Lidar-specific wavelengths.

 Performed preliminary validation of THM-new for active Lidar remote sensing retrieval consistency.

 Performed expansion of spherical harmonics function to represent global distribution of clouds.

 \circ Validated by the computations of the Rapid Radiative Transfer Model for GCMs (RRTMG).

Reasons for a new Two-Habit Model Database

- Current ice cloud models have inaccurate backscattering for moderate size parameters.
 - Improved Geometric Optics Model (IGOM) less accurate.
 - Affects lidar-based retrievals and assumptions needed to be made.
- Invariant Imbedding T-Matrix Method (IITM) does not handle small-scale surface roughness.
 - Computationally expensive so only smooth particles used.
- The THM follows the Thompson et al. 2008 cloud ice scheme than other commonly used single-scattering databases.
 - Used with the Weather Research and Forecasting (WRF) Model.

Finalized Full Resolution Two Habit Model (THM-new)

10⁰

- 60-particle distorted single column and 20-particle distorted 20-column aggregate ensembles.
- Now includes 3 Lidar-specific wavelengths.
- More accurate phase matrix backscattering calculations provided by Physical Geometric Optics Method (PGOM).
 Replaces existing IGOM backscattering calculations.
 Available for 94 wavelengths: 0.2 – 1.1μm (includes Lidar wavelengths).

Phase Function Backscattering Comparison

- PGOM phase function (P₁₁) backscattering (180°) calculations compared with previous THM (THM-prev).
 - THM-prev (Loeb et al., 2018) only has IGOM calculations with roughened hexagonal column as "simple" habit.
- *P*₁₁(180°) differences concentrated within 0.2 1.1µm wavelengths.

 \odot THM-new has generally higher backscatter.

Bulk Radiative Parameterization for Fu-Liou RTM

- Remains unchanged in regards to improved phase matrix backscattering.
- Parameterization performed for **18 shortwave bands** and **14 longwave bands**.
- Utilizes a 10-term polynomial equation for bulk extinction efficiency, scattering albedo, and asymmetry parameter.
 - \circ Coefficients (c_i) derived from least square linear regression.

Shortwave Bands						
#	Bandwidth (µm)	Band Avg (µm)	Gases			
1	0.175 – 0.224	0.21	03			
2	0.224 – 0.243	0.23	03			
3	0.243 – 0.285	0.26	03			
4	0.285 – 0.298	0.29	03			
5	0.298 - 0.322	0.31	03			
6	0.322 – 0.357	0.33	03			
7	0.357 – 0.437	0.38	03			
8	0.437 – 0.497	0.46	O3 / H2O			
9	0.497 – 0.595	0.53	O3 / H2O			
10	0.595 – 0.689	0.63	O3 / H2O			
11	0.690 - 0.794	0.72	H2O / O2 / O3			
12	0.794 – 0.889	0.83	H2O			
13	0.889 - 1.042	0.94	H2O			
14	1.042 - 1.410	1.16	H2O			
15	1.410 - 1.905	1.57	H2O / CO2			
16	1.905 - 2.500	2.10	H2O / CO2 / CH4			
17	2.500 - 3.509	2.84	H2O / CO2 / O3 / CH4			
18	3.509 - 4.000	3.67	H2O / CO2 / CH4			

Longwave Bands							
#	Bandwidth (µm)	Band Avg (µm)	Gases				
1	4.54 – 5.26	4.78	H2O				
2	5.26 – 5.88	5.47	H2O				
3	5.88 – 7.14	6.30	H2O				
4	7.14 - 8.00	7.43	H2O / CH4 / N2O				
5	8.00 - 9.09	8.36	H2O / CH4 / N2O / Cfc				
6	9.09 - 10.2	9.46	H2O / O3 / Cfc				
7	10.2 – 12.5	10.97	H2O / Cfc				
8	12.5 – 14.9	13.30	H2O / CO2				
9	14.9 – 18.5	16.10	H2O / CO2				
10	18.5 – 25.0	20.67	H2O				
11	25.0 - 35.7	28.57	H2O				
12	35.7 – 99.0	56.80	H2O				
13	3.50 - 4.00	3.67	H2O / CO2				
14	4.00 - 4.50	4.18	H2O / N2O / CO2				

Lidar-Based Retrieval Consistency

- 532nm Integrated Attenuated Backscatter (IAB) can be calculated from ice cloud optical thickness (ICOT) and Lidar Ratio (S).
- Lidar Ratios calculated by THM-new and THM-prev P₁₁ backscatter and compared against collocated CALIOP IAB and CloudSat ICOT of ice cloud cases.
 Entire year of 2009, 2010, 2013, 2014.

80

70

Ratio (sr) 0500

Lidar

40

30

20

2

THM-prev

THM-new

10

Effective Radius (μ m)

 $\lambda = 355$ nm

 $\cdots \lambda = 1064$ nm

100

= 532nm

• THM-new has significantly improved consistency.

 4π

 $\omega_{bulk} P_{11,bulk}(180^\circ)$

S =

Ice Cloud IAB

Further Optimizing THM-new with Smooth Hexagonal Columns

- THM-new 532nm lidar ratios still inconsistent with mode of CALIOP lidar ratios.
- Including small habit fraction of smooth hexagonal column further improves consistency (THM-hex).
 - Plan to find optimal hexagonal column habit fraction to include in THM-new based on latitudinal trends in lidar ratio and IAB-ICOT relationship.

Collocated 532nm CALIOP Lidar Ratio

Frequency Distribution

25000

 \odot Separate collocated cases into 10° or 5° latitude bins.

Spherical harmonic expansion of cloud properties

RRTMG computation with reconstructed cloud properties

Spherical harmonic expansion coefficients

Summary and Future Work

 Full resolution database of new Two-Habit Model (THM-new) finalized and delivered.

 \odot Added PGOM backscattering calculations to 94 shortwave wavelengths.

 \circ Improved consistency in the IAB-ICOT relationship to lidar observational data.

- Ist draft of JGRL manuscript written and currently being revised.
- Plans to modify THM-new to include small habit fractions of smooth hexagonal columns for lidar applications.
 - Optimize consistency to lidar observational data by latitudinal location of ice clouds.
- Expansion of spherical harmonic function can accurately represent cloud properties on a global scale.

Can even represent hemispheric asymmetry of cloud properties.

 Explore cloud spatial distribution patterns using spherical harmonic expansion technique.