

Libera science overview and updates

Maria Hakuba CERES STM, Apr 27, 2022

Libera's overarching Science goals

OG1: Enable seamless continuity of the CERES Earth Radiation data record.

- Measurement of TOT, SW and LW with same characteristics as CERES.
- On JPSS-3 with VIIRS to enable state-of-the-art flux conversion.

OG2: Advance the development of a self-contained, innovative & affordable observing system.

- Miniaturized high-accuracy radiometers (ESRs with VACNT detectors)
- Wide field-of-view camera for Scene context and split-SW ADM development.

OG3: Provide new and enhanced capabilities that support extending ERB science goals.

- Additional split-SW channel to quantify shortwave near-IR and visible radiative flux deposition in the climate system.
- Far-IR retrieval to provide information on upper-tropospheric contribution to ERB variability especially near the poles.

Libera continuity

RBSP

Libera beyond L-1b

ADMs & camera application

OG2: Development of a self-contained, innovative & affordable observing system

Demonstrate feasibility of separating Libera from complex imagers so to fly on SmallSats

Science objective 2:

- Explore utility of scene identification from a small and cost-effective camera.
- Develop angular distribution models (ADM) to facilitate shortwave near-IR and visible radiance-to-flux conversion.

Monochromatic (555 nm) wide field of view (WFOV) camera provides images at ~1 km pixel resolution.

Angular distribution models (ADMs): the basics

- Libera will observe radiance R leaving a scene in a particular direction.
- Of primary scientific interest is radiance leaving the scene integrated over all directions in the hemisphere above the scene (flux or *irradiance I*).

- The most simple case: *isotropic*.
- In reality, scenes are not perfectly isotropic. ADMs provide an *anisotropic factor* α that relates the observed radiance to irradiance.

21 August 2020

Libera Science Team Meeting

Jake.J.Gristey@noaa.gov

Solar ADMs: factors to consider

Solar-viewing geometry

- Solar zenith angle (θ_s)
- Viewing zenith angle (0,)

21 August 2020

Libera Science Team Meeting

Jake.J.Gristey@noaa.gov

4

Libera split-shortwave ADM approach

1. OSSE "prior" ADMs [pre-launch]

✓ ERBE-like scenes: Based on RTM inputs

CERES-like scenes: Based on RTM inputs

2. Wide-field-of-view camera ADMs [shortly after launch]

3. Primary split-SW radiometer RAPS ADMs [later in mission]

✓ ERBE-like scenes: Camera-derived cloud fraction

CERES-like scenes: ???

Q: How is scene type for CERES RAPS observations obtained? A: "Cookie dough"

- ERBE-like scenes: Camera-derived cloud fraction
- CERES-like scenes: Obtain from RBSP, already produced for total SW processing

First look at CERES cookie dough

NOAA 20 (JPSS-1) 1st October 2021

"We use every fourth VIIRS imager pixel and every other scan line in processing."

Camera sampling

- 2048 × 2048 pixel array samples entire Earth disk
- Single channel: 555 nm
- < 1km resolution @ nadir
- Exposure every 5 secs
- 124° field of view, horizon-to-horizon (~6000 km @ surface)

Camera ADM sampling

Camera sampling projected onto cookie dough

 Select cookie dough +/- 9 min of camera observation time (~15 min for satellite to traverse camera FOV)

Night ADM sample Day ADM sample, outside VIIRS swath Day ADM sample, added to count

Overcast

0.0 %

150

Ke	Y
	,

- Night ADM sample
 Day ADM sample, outside VIIRS swath
 - Day ADM sample, added to count

<u>Key</u>

Night ADM sample
Day ADM sample, outside VIIRS swath
Day ADM sample, added to count

'Traditional' RAPS sampling over 1 year (2020) of FM5 SSF data

Mathew Van Den Heever (LASP, CU Boulder)

Ocean, Clear Sky, First Day of Month – 1 year sampling using

ADM sampling preliminary conclusions

- Camera ADM sampling projected onto one day of "cookie dough" containing retrieved scene properties from VIIRS (produced by CERES team)
- Each camera "ADM sample" assigned a ERBE-like scene type by mapping to VIIRS/cookie dough data
- ERBE scenes and angular bins are well sampled in < 1 day.
 - First quantification of the "dense angular sampling"!
- Provides skeleton for operational code
- Key outstanding issues:
 - Only implemented for ERBE-like scene types, ultimately will be used with CERES-like scene types
 - Simple averaging over pixels, need to implement PSF weighting
 - Variability on different days/seasons
 - Explore SZA bin dimension

Hemispheric symmetries - Annual averaging

Matt Watwood (LASP, CU Boulder)

- Literature commonly cites a hemispheric difference of around 0.68 Wm⁻² in incoming solar radiation
- This is not a physical:
 - This difference is reduced to 0.02 Wm⁻² if yearly averages are calculated using monthly weights based on the # of days in a month (e.g., Datseris & Stevens, 2021)
- Kepler's Laws define that each hemisphere should receive the same amount of energy over a year
 - The SH has a 'warmer' summer and a 'colder' winter + NH has a longer summer

- When averaged by days of the month there is still poor agreement year to year from the **leap years**
- This amounts to 0.1-0.25% error (left)
- Averaging over 4-years (right) demonstrates that this is a numerical artifact stemming from the leap year

Fix #1 We weight February with 28.25 Days in Each Year

Fix #2 February can be Weighted to Minimize this Error

- The error persists but is now approximately halved.
- It may not be worth correcting more?

• Can these be derived physically?

Hemispheric symmetries - Annual averaging: Thoughts and Questions

- Simplest answer is likely to calculate from daily data, but not all data products are available on that scale
 - A correction algorithm is needed when using monthly temporal resolution
- Has this issue been dealt with before? Feedback welcome!
 - Matt.Watwood@lasp.colorado.edu
- What other numerical considerations are important on these small numerical scales?

Summary

- Libera science overview
 - Continuity is priority, but Libera thinks of the future with innovation and "imager-separation" experiment!
 - ATBDs in good progress
- ADM sampling for split-SW channel (Jake Gristey and Mathew Van den Heever)
 - With the WFOV camera, ERBE scenes and angular bins are well sampled in < 1 day.
 - First quantification of the "dense angular sampling"!
 - Traditional RAPS 1-3 times a month per year is much slower and incomplete
- Hemispheric symmetries (Matt Watwood)
 - Small values require very accurate weighted arithmetic.
 - Solar irradiance is symmetric when weighted correctly
 - Leap years yield artifacts in annual mean solar irradiance.

Space Balls Update

Earth's Energy Imbalance via radiation pressure accelerations

Is a high-accuracy measurement of Earth's Energy Imbalance (EEI) feasible via radiation pressure accelerations experienced in orbit? Objectives:

- 1. Build SB simulation environment using mission design software Monte
- 2. Enhance fidelity of force and shape models
- 3. Study measurement errors due to S/C and orbit characteristics, and confounding forces
- 4. Explore different sampling strategies

Potential European climatological satellite missions: SEOCS and BIRAMIS

G. DUCHOSSOIS Department of Application Programmes, Directorate of Planning and Future Programmes, Eu Space Agency, 8 rue Mario Nikis, 7578, Prairis Cedex 15, France

(Received 19 December 1979)

CASTOR D5B Satellite

Theoretical Comparison Between Radiometric and Radiation

Pressure Measurements for Determination of the Earth's Radiation Budget T.H. Vonder Haar and E.A. Smith