

Libera Mission Status and Update
P. Pilewskie & Libera Team

Libera, Earth Venture Continuity-1 Mission

'Li-be-ra, named for the daughter of Ceres in ancient Roman mythology

JPSS-3 Instruments

Libera – Earth Radiation Budget

ATMS - Advanced Technology Microwave Sounder

CrIS - Cross-track Infrared Sounder

VIIRS – Visible Infrared Imaging Radiometer Suite

OMPS – Ozone Mapping and Profiler Suite

Libera completed Preliminary Design Review 8-10 Feb. 2022 Libera passed KDP-C 12 April 2022

Provides continuity of the Clouds and the Earth's Radiant Energy System (CERES) Earth radiation budget (ERB).

- Measures integrated shortwave (0.3–5 μm), longwave (5–50 μm), total (0.3–100+ μm) and (new) split-shortwave (0.7–5 μm) radiance over 24 km nadir footprint; uncertainty $\sim 0.3\%$
- Includes a wide FOV camera for scene ID and simple ADM generation to pave way for future free-flyer ERB observing system

Innovative technology:

> Electrical substitution radiometers (ESRs) using vertically-aligned carbon nanotube (VACNT) detectors

Primary operational modes:

➤ Cross-track and azimuthal scanning; on-board calibrators; solar and lunar viewing.

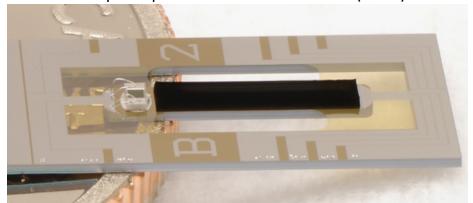
Flight:

> JPSS-3, 2028 launch; 5-year mission

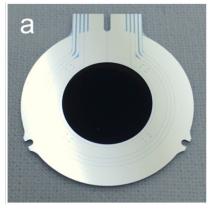
Partners:

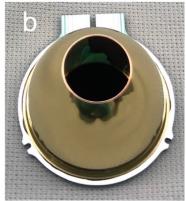
➤ LASP, Ball Aerospace, NIST Boulder, Space Dynamics Lab; CU, JPL, CSU, UA, UM, LBL

Libera Major Reviews and Key Milestones

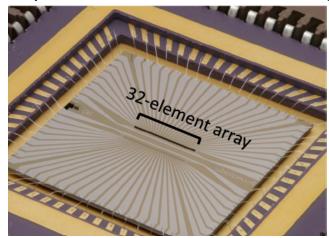

Milestone	Acronym	Date	Convening Authority
Authorization to Proceed	ATP	6 Jul 20	-
System Requirements Review	SRR	22 Feb 21	SRB
Key Decision Point - B	KDP-B	30 Apr 21	SMD PMC
Preliminary Design Review	PDR	8-10 Feb 22	SRB
Key Decision Point - C	KDP-C	Apr 22	SMD PMC
Critical Design Review	CDR	Feb 23	SRB
Instrument Integration Review	IIR	Jun 24	SRB
Pre-Environmental Review	PER	Oct 24	SRB
Pre-Ship Review	PSR	Mar 25	SRB
Delivery to Spacecraft		May 25	-
Key Decision Point D	KDP-D	Jun 25	SMD PMC
Launch		2027	-
Key Decision Point E	KDP-E	2027	SMD PMC
Post Launch Assessment Review	PLAR	L+90d	SRB
Operational Transition Review	OTR	PLAR + 9mo	TBD

ERB Continuity

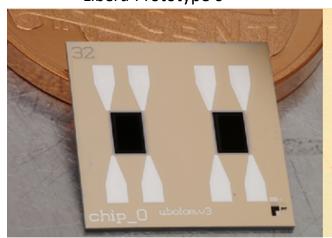

- CERES, the longest continuous global observational record of ERB, started in 2000.
- Six CERES instruments are in orbit flying aboard the Terra, Aqua, Suomi National Polar orbiting Partnership (SNPP) and NOAA-20 satellites.
- Five of the six CERES instruments are well beyond their nominal five-year design lifetime.
 - ➤ By late 2027, when JPSS-3 is currently scheduled to launch, there is a 38% probability that a data gap in the ERB record will occur regardless of the various decommissioning scenarios for Terra, Aqua and SNPP.
 - ➤ Gap-filling methods using imagery data will have uncertainty on the order of current decadal trends; time-to-detection is compromised
 - The current ERB data record depends on continuity and overlap to align measurements from different instruments. A gap increases uncertainty in the composite.


VACNT ESRs for Climate Studies

Compact Spectral Irradiance Monitor (CSIM)



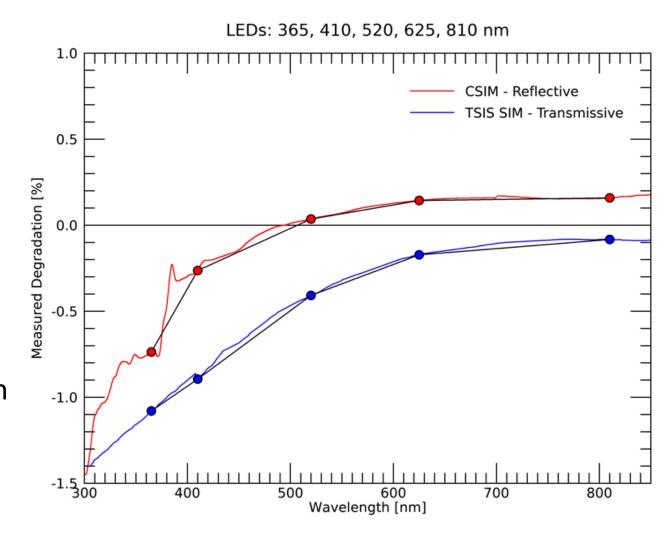
Compact Total Irradiance Monitor (CTIM)




Black Array of Broadband Absolute Radiometers (BABAR)

Libera Prototype 0

Libera Prototype 4



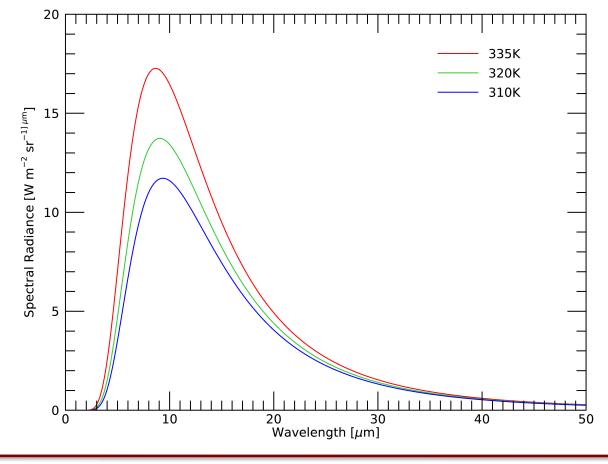
SW Calibration System

- Tracks changes in SW spectral response of science radiometers
- LEDs at six wavelengths:
 - ➤ 365, 410, 520, 625, 810, 1550 nm
- LED Radiance Monitor
 - ➤ SW Calibration Radiometer (SWCR)
 - ➤ Replica of total radiometer
- Radiometer Scan Mirror (RSM) sweeps SW LED radiance between SWCR and science radiometers
- Primary mode of long-term drift is degradation of the SWCR optics
 - ➤ Inherent SWCR detector stability <0.01%/year
 - ➤ Keep optics degradation <0.01%/year
- UV exposure rate of the SWCR is 1000 times less than science radiometers

Wavelength Selection

- Wavelengths chosen to capture expected wavelength dependence
- Measured optical degradation between redundant channels on TSIS-1 SIM (blue) and CSIM (red)
- Similar spectral shape
- Degradation with reflective first optic (CSIM) can show *increase* in reflectivity with optical degradation

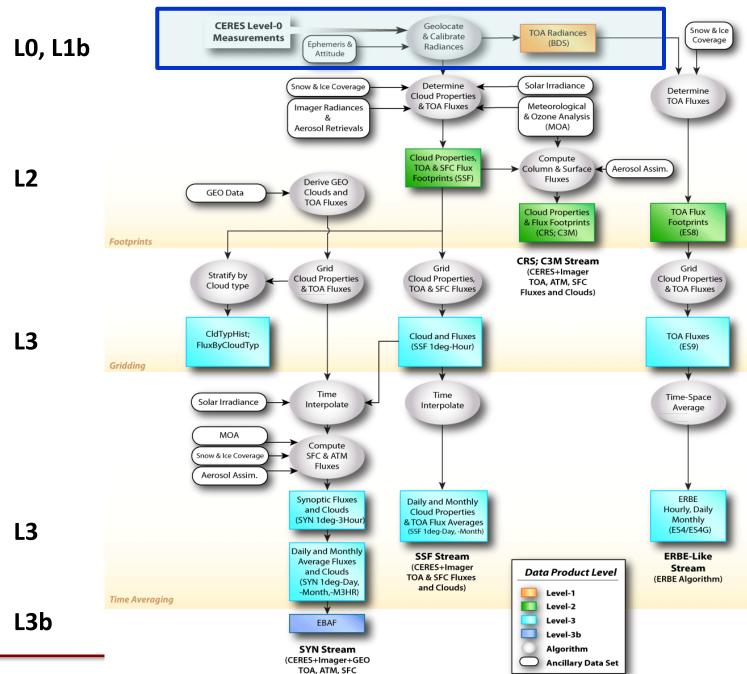
LW Calibration System


• On board thermal calibration source for LW and TOT telescope channels

➤ Will also monitor longwave contribution to SW and SSW radiometers.

• LWC will maintain a constant temperature at 310 K and will be varied between 310-335 K

periodically to test response linearity


Temperature [K]	Integrated Radiance [W m ⁻² sr ⁻¹]
335	227
320	189
310	167

Libera Algorithm Theoretical Basis Document (ATBD)

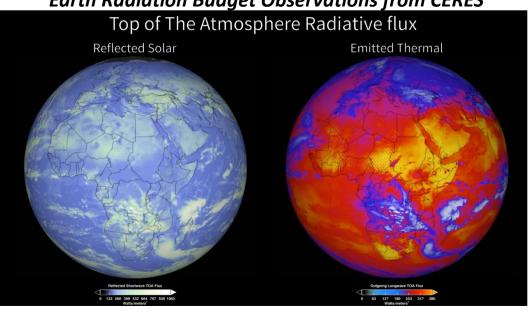
Section#	Product or Processing	ATBD content	Lead
1	L-1b Radiometer Radiances	Instrument calibration and operations	D. Harber
2	Geolocation	Radiometer and camera	S. Beland
3	L-1c Unfiltered Radiometer radiances	VIS and NIR	P. Pilewskie
4	L-1b Camera radiances	Instrument, calibration and operations	S. Schmidt
5	L-2x Cloud fraction	Adaptive thresholding + camera	S. Schmidt
6	ADMs for split channel	ADM formulation & binning	J. Gristey
7	L-2x TOA SW, VIS, NIR fluxes	Instantaneous foot print (limited regions); Scene ID with camera/VIIRS CF VIIRS & (new) ERBE ADMs	M. Hakuba
8	L-2 TOA Far-IR fluxes	Instantaneous foot print; includes ADMs	X. Huang
9	L-2 SUR fluxes SW, NIR, VIS	Computed TOA and SUR fluxes SSF; validation approach	X. Dong

CERES Data Processing Flow

Fluxes and Clouds)

Coordination Between Libera and RBSP

- Weekly meetings between LASP and RBSP
- Calibration and Validation working group oversees ground and on-orbit calibration activities. Interface between LASP, technical partners at Ball, NIST and SDL and the RBSP.
- The Libera/RBSP/ASDC Data Management Working Group oversees the production and distribution to the RBSP and ASDC of Libera level 1-b data and metadata.
- The *Libera*/RBSP Operations Working Group will manage the Libera concept of operations before and during the year-1 Phase E operations effort.


All part of the Libera Earth Radiation Budget Continuity Plan

Libera, Earth Venture Continuity-1 Mission

'Li-be-ra, named for the daughter of Ceres in ancient Roman mythology

Earth Radiation Budget Observations from CERES

Libera continues the 22-year CERES Climate Data Record for the Earth Radiation Budget (ERB).

- > Measures reflected solar and emitted infrared radiation from Earth
- > Provides fundamental climate information about the balance between incoming and outgoing energy from Earth
- > Continuity of this climate record over time reveals the signals of climate change – connects temperature trends to energy flow

Libera is Innovative:

- > Uses state of the art detectors with carbon nanotube technology, the blackest substance on Earth
- > Adds a split-shortwave measurement to isolate where energy from the Sun is deposited in the Earth system.
- > Adds a wide-field-of-view camera to support split shortwave science

Partners:

- > LASP, Ball Aerospace, NIST Boulder, Space Dynamics Lab
- Science Team: CU, JPL, CSU, UA, UM, LBL

Flight:

> JPSS-3, 2027 launch; 5-year mission

27 April 2022 **CERES Science Team Meeting**

Thanks!