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Hyperspectral Remote Sensing
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Clear-sky detection from rich spectral information can be beneficial

v Application:
Ø Data assimilation
Ø Trace gas retrieval
Ø Clear-sky flux estimation

v Imager like MODIS
Ø Fine spatial resolution but 

limited spectral channels

v Hyperspectral sounder 
like AIRS
Ø Thousands of spectral 

channels but coarse spatial 
resolution

Image from NASA (https://atrain.nasa.gov/)



Collocations of CERES and AIRS footprints
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Huang et al. (2008)
CERES

AIRS

We have used such collocation advantage to
1. derive spectral flux from AIRS
2. assess the stability of FM3 over the 

years
3. retrieve CFC-11 from AIRS and CrIS

(Chen et al., 2020)
4. evaluate GEOS-5 T/q profiles
5. and here…
• Can we use pixel-based CERES-MODIS 

clear-sky detection result to train a 
clear-sky detection method for the 
infrared sounder like AIRS or CrIS?   

• How does such trained method compare 
to those physical-based methods?



Data & Methodology
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Clear-sky detection from AIRS infrared hyperspectral observations

v Data:
Ø AIRS brightness temperature (BT) from 1,598 thermal infrared channels
Ø HadCRUT sea surface temperature (SST)
Ø CERES-MODIS Ed4 cloud flag (Minnis et al., 2021)
Ø MODIS Cloud Product Collection 6/NASA EOS WorldView

Huang et al. (2008)

v Data Selection:
Ø Nadir view
Ø Tropical ocean

v Data Processing:
Ø Collocation of CERES and 

AIRS footprint
Ø Equally sampled: cloudy 

samples = clear samples
Ø Normalization 𝑿′ = 𝑿"#𝑿

$(𝑿)

Ø Grid hyperparameter tuning



Goal of Our Study
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Clear-sky detection from AIRS infrared hyperspectral observations

v Machine learning models:
Ø Linear-kernel support vector classifier (LinearSVC)
Ø Random forest classifier
Ø Gradient boosting classifier
Ø Fully-connected artificial neural network (FNN)
Ø 1D convolutional neural network (CNN)

v Compared to common physically-based algorithms:
Ø Bispectral method (cloudy if 𝐵𝑇!"# − 𝐵𝑇$$"# > 0)
Ø Thermal contrast threshold method (cloudy if 𝑆𝑆𝑇 − 𝐵𝑇#%& > 𝜎)

v Spectral classification, without spatial and temporal information
v No visible and near-infrared channels, assessing the potential of exploiting 

abundant spectral information in the thermal radiation spectrum for clear-
sky detection

10/12/21



Evaluation
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Training on year 2004 (106,558 spectra), evaluation on year 2008 (1,159,955spectra)

Model Name True Positive False Negative True Negative False Positive Accuracy

LinearSVC 78.96% (2) 15.57% (2) 4.97% (4) 0.50% (4) 83.93% (2)

RF 74.45% (5) 20.08% (5) 5.03% (2) 0.45% (2) 79.48% (5)

GB 75.46% (4) 19.07% (4) 4.98% (3) 0.49% (3) 80.44% (4)

FNN 79.06% (1) 15.46% (1) 4.92% (5) 0.55% (5) 83.98% (1)

1D-CNN 77.61% (3) 16.91% (3) 5.09% (1) 0.39% (1) 82.70% (3)

Thermal Contrast 34.14% 60.39% 5.47% 0.00% 39.61%

Bispectral Algorithm 21.56% 72.97% 5.47% 0.00% 27.03%
Clear

Cloudy

Thermal Contrast = SST - BTmax
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learning models
ü LinearSVC and 1D-CNN are slightly superior
ü Relatively balanced cloudy-sky detection rate (~81%) and 

clear-sky rate (~91%) despite of severely imbalanced dataset



Feature Importance Analysis
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ML models can exploit refined structure of the contrasts between BT and SST
Tree-Based Feature Importance

ü Bands with weighting function peak on the ground have 
relatively greater importance

ü High thermal contrast samples correctly predicted by all 
models

ü SST is a significant predictor in all models. Nevertheless, 
eliminating SST variable has little impact on 1D-CNN

Model Name Accuracy (All) Accuracy (SST-BTmax>10K)

LinearSVC 83.93% 100.00%

RF 79.48% 100.00%

GB 80.44% 100.00%

FNN 83.98% 100.00%

1D-CNN 82.70% 100.00%

SST Score = 0.0117
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Feature Importance

CO2, H2O, and window
Other Trace Gases



Case Study
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Enumerate the cases where models succeed or fail in prediction

MODIS Corrected Reflectance (True Color) – EOS WorldView

Clear-sky Scenes
All models fail

Cloudy-sky Scenes
All models fail



Case Study
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Enumerate the cases where models succeed or fail in prediction

MODIS Corrected Reflectance (True Color) – EOS WorldView

Cloudy-sky Scenes
All models succeed

Clear-sky Scenes
All models succeed



Error Analysis
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Broken clouds are one of the error sources

ü Increasing error rate when the cloud 
fraction decreases from 1 to ~0.2.

ü Slight decreasing error rate when the 
cloud fraction decreases from 0.2 to 
0.05. 

Cloud fraction from MOD06/NASA EOS WorldView



Error Analysis
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Broken clouds are one of the error sources

EOS WorldView

ü Increasing error rate when the cloud 
fraction decreases, excluding the 
boundaries

ü CERES-MODIS determines a scene to 
be cloudy if the mean MODIS cloud 
fraction within the CERES footprint is 
larger than 0.1%, which might be too 
strict

ü Imperfect collocation of two products

100%0%



Error Analysis (true cloud scenes)
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Indistinguishable low clouds and data quality issue are likewise critical

ü Cloudy scenes with liquid phase and high CTT easily 
confused with clear samples

ü High data quality essential for training and evaluation
ü Samples close to landmasses having problematic labels

0 Models 1 Model 2 Models
3 Models 4 Models 5 Models

Liquid Mixed Ice Uncertain



Error Analysis
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Indistinguishable low clouds and data quality issue are likewise critical

EOS WorldView

100%0%



Take-home Messages
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From feature importance attribution and error analyses to physical interpretability

v In terms of clear-sky detection, ML models performs well
Ø Linear SVC and 1D-CNN slightly better than others;
Ø ML feature importance can be related to the physics.

v Broken clouds and low clouds are responsible for most errors.
v Training data quality is also critical 
v As a preliminary study, we might not fully unleash the power of ML 

learning techniques yet
Ø Spatial information is not exploited yet
Ø Impose a priori channel correlations in the detection
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