

On the use of CERES SSF dataset to understand different machine-learning algorithms for clear-sky detections in infrared hyperspectral observations

Chongxing Fan¹, Xianglei Huang¹, Xiuhong Chen¹, Qing Yue² ¹University of Michigan, Ann Arbor, Michigan, USA ²JPL/Caltech

> 2021 Fall CERES Science Team Meeting Oct 13, 2021

Hyperspectral Remote Sensing

Clear-sky detection from rich spectral information can be beneficial

- Application:
 - Data assimilation
 - Trace gas retrieval
 - Clear-sky flux estimation
- Imager like MODIS
 - Fine spatial resolution but limited spectral channels
- Hyperspectral sounder like AIRS
 - Thousands of spectral channels but coarse spatial resolution

AIRS

We have used such collocation advantage to

- 1. derive spectral flux from AIRS
- 2. assess the stability of FM3 over the years
- 3. retrieve CFC-11 from AIRS and CrIS (Chen et al., 2020)
- 4. evaluate GEOS-5 T/q profiles
- 5. and here...
- Can we use pixel-based CERES-MODIS clear-sky detection result to train a clear-sky detection method for the infrared sounder like AIRS or CrIS? 20
- How does such trained method compare 178.0 w to those physical-based methods?

Data & Methodology

Clear-sky detection from AIRS infrared hyperspectral observations

- Data:
 - > AIRS brightness temperature (BT) from 1,598 thermal infrared channels
 - HadCRUT sea surface temperature (SST)
 - CERES-MODIS Ed4 cloud flag (Minnis et al., 2021)
 - MODIS Cloud Product Collection 6/NASA EOS WorldView
- Data Selection:
 - > Nadir view
 - Tropical ocean
- Data Processing:
 - Collocation of CERES and AIRS footprint
 - Equally sampled: cloudy samples = clear samples
 - > Normalization $X' = \frac{X \overline{X}}{\sqrt{S(X)}}$
 - Grid hyperparameter tuning

UNIVERSITY OF MICHIGAN

Goal of Our Study

Clear-sky detection from AIRS infrared hyperspectral observations

- Machine learning models:
 - Linear-kernel support vector classifier (LinearSVC)
 - Random forest classifier
 - Gradient boosting classifier
 - Fully-connected artificial neural network (FNN)
 - > 1D convolutional neural network (CNN)
- Compared to common physically-based algorithms:
 - > Bispectral method (cloudy if $BT_{8\mu m} BT_{11\mu m} > 0$)
 - > Thermal contrast threshold method (cloudy if $SST BT_{max} > \sigma$)
- Spectral classification, without spatial and temporal information
- No visible and near-infrared channels, assessing the potential of exploiting abundant spectral information in the thermal radiation spectrum for clearsky detection

Evaluation

Training on year 2004 (106,558 spectra), evaluation on year 2008 (1,159,955 spectra)

True Positive	False Negative	True Negative	False Positive	Accuracy
78.96% (2)	15.57% (2)	4.97% (4)	0.50% (4)	83.93% (2)
74.45% (5)	20.08% (5)	5.03% (2)	0.45% (2)	79.48% (5)
75.46% (4)	19.07% (4)	4.98% (3)	0.49% (3)	80.44% (4)
79.06% (1)	15.46% (1)	4.92% (5)	0.55% (5)	83.98% (1)
77.61% (3)	16.91% (3)	5.09% (1)	0.39% (1)	82.70% (3)
34.14%	60.39%	5.47%	0.00%	39.61%
21.56%	72.97%	5.47%	0.00%	27.03%
	True Positive 78.96% (2) 74.45% (5) 75.46% (4) 79.06% (1) 77.61% (3) 34.14% 21.56%	True PositiveFalse Negative78.96% (2)15.57% (2)74.45% (5)20.08% (5)75.46% (4)19.07% (4)79.06% (1)15.46% (1)77.61% (3)16.91% (3)34.14%60.39%21.56%72.97%	True PositiveFalse NegativeTrue Negative78.96% (2)15.57% (2)4.97% (4)74.45% (5)20.08% (5)5.03% (2)75.46% (4)19.07% (4)4.98% (3)79.06% (1)15.46% (1)4.92% (5)77.61% (3)16.91% (3)5.09% (1)34.14%60.39%5.47%21.56%72.97%5.47%	True PositiveFalse NegativeTrue NegativeFalse Positive78.96% (2)15.57% (2)4.97% (4)0.50% (4)74.45% (5)20.08% (5)5.03% (2)0.45% (2)75.46% (4)19.07% (4)4.98% (3)0.49% (3)79.06% (1)15.46% (1)4.92% (5)0.55% (5)77.61% (3)16.91% (3)5.09% (1)0.39% (1)34.14%60.39%5.47%0.00%21.56%72.97%5.47%0.00%

- Traditional algorithms perform poorer than all machine learning models
- ✓ LinearSVC and 1D-CNN are slightly superior
- ✓ Relatively balanced cloudy-sky detection rate (~81%) and clear-sky rate (~91%) despite of severely imbalanced dataset

Feature Importance Analysis

ML models can exploit refined structure of the contrasts between BT and SST

 \checkmark Bands with weighting function peak on the ground have relatively greater importance

- ✓ High thermal contrast samples correctly predicted by all
- \checkmark SST is a significant predictor in all models. Nevertheless, eliminating SST variable has little impact on 1D-CNN

Model Name	Accuracy (All)	Accuracy (SST-BT _{max} >10K)
LinearSVC	83.93%	100.00%
RF	79.48%	100.00%
GB	80.44%	100.00%
FNN	83.98%	100.00%
1D-CNN	82.70%	100.00%

Case Study

Enumerate the cases where models succeed or fail in prediction

10/12/21

Case Study

Enumerate the cases where models succeed or fail in prediction

10/12/21

Error Analysis

Broken clouds are one of the error sources

Cloud fraction from MOD06/NASA EOS WorldView

Error Analysis

Broken clouds are one of the error sources

Error Analysis (true cloud scenes)

Indistinguishable low clouds and data quality issue are likewise critical

- Cloudy scenes with liquid phase and high CTT easily confused with clear samples
- ✓ High data quality essential for training and evaluation
- ✓ Samples close to landmasses having problematic labels

MICHIGAN

Error Analysis

Indistinguishable low clouds and data quality issue are likewise critical

Take-home Messages

From feature importance attribution and error analyses to physical interpretability

- In terms of clear-sky detection, ML models performs well
 - Linear SVC and 1D-CNN slightly better than others;
 - > ML feature importance can be related to the physics.
- Solution of the second state of the second
- Training data quality is also critical
- As a preliminary study, we might not fully unleash the power of ML learning techniques yet
 - Spatial information is not exploited yet
 - Impose a priori channel correlations in the detection

Thank You!

References:

- Huang, X., Yang, W., Loeb, N. G., & Ramaswamy, V. (2008). Spectrally resolved fluxes derived from collocated AIRS and CERES measurements and their application in model evaluation: Clear sky over the tropical oceans. *Journal of Geophysical Research: Atmospheres*, 113(D9).
- 2. Minnis, P., Sun-Mack, S., and Co-authors (2021). CERES MODIS Cloud Product Retrievals for Edition 4—Part I: Algorithm Changes. *IEEE Transactions on Geoscience and Remote Sensing*, *59*(4), 2744–2780.
- 3. Chen, X. H., X. L. Huang, and L. L. Strow (2020), Near-global CFC-11 Trends as Observed by Atmospheric Infrared Sounder from 2003 to 2018, JGR-Atmospheres, 125(22), e2020JD033051.

