EEI = Global long-term mean Net Radiative flux at TOA

Updated from IPCC AR5 / Wild et al. 2013, 2015 Climate Dynamics

~0.7 Wm\(^{-2}\)

(Johnson et al., 2016)

Note: This number does not originate from TOA radiation data!
EEI = radiative forcings – radiative feedbacks

EEI variability reflects natural and anthropogenic radiative effects on multiple time scales

~0.7 Wm-2
global long-term mean 2005-2015
EARTH ENERGY IMBALANCE:

- $0.47 \pm 0.1 \ (0.87 \pm 0.12) \ \text{W m}^{-2}$
- \approx Required CO$_2$ reduction: $-57 \pm 8 \ \text{ppm}$

Incoming Solar Radiation

Outgoing Radiation

Total Heat Gain

- **Cryosphere**: 4% (3%)
- **Ocean**: 89% (90%)
- **Land**: 6% (5%)

EEI = rate of global heat content change

EEI = heat that melts ice, expands ocean, warms the atmosphere and the land
EEI is the *true* rate of global warming/energy accumulation

Loeb et al., 2018
EEI is the *true* rate of global warming/energy accumulation.

Heat uptake: \(11 \times 10^{21} \text{ J/yr}\)

Annual mean heat uptake (\(=\) EEI \(\sim 0.7 \text{ Wm}^{-2}\)) is 18 times the annual energy consumption of the world’s population (\(6 \times 10^{20} \text{ J}\)).
It is difficult to measure EEI directly

- TOA radiometry: Clouds and Earth’s Radiant Energy system (CERES)
 - Uncertainty (calibration, radiation flux retrieval) >> 1 Wm\(^{-2}\)
 - Un-anchored, EEI as residual of TOA fluxes would be 4 Wm\(^{-2}\)
 - We cannot estimate EEI directly from the TOA radiation budget

- **Taking Earth’s heat inventory** (e.g. von Schuckmann et al., 2020)
 - In the global annual mean: \(\text{Net heat flux} = \text{heat storage} + \text{heat transport}\)
 - The world’s oceans are the largest sink of heat (90%), followed by the land (5%), ice melt (3%), atmosphere (1%)
Temperature, pressure, salinity through ocean column (0-2000m)
Temporal change in OHC (dOHC/dt) = ocean heat uptake (OHU)
OHU = 0.62 ± 0.1 Wm⁻²; EEI = 0.77 ± 0.1 Wm⁻² (2005-2019)
(including deep ocean & non-ocean heat uptake)

- In-situ systems largely miss deep ocean
- Spatio-temporal sampling is incomplete
- Comprehensive uncertainty analysis missing
- Independent approach to verify?
It is difficult to measure EEI directly

- TOA radiometry: Clouds and Earth’s Radiant Energy system (CERES)
 - Uncertainty (calibration, radiation flux retrieval) >> 1 Wm$^{-2}$
 - Un-anchored, EEI as residual of TOA fluxes would be 4 Wm$^{-2}$
 - We cannot estimate EEI directly from the TOA radiation budget

- Taking Earth’s heat inventory (e.g. von Schuckmann et al., 2020; next week!)
 - In the global annual mean: $Net \ heat \ flux = heat \ storage + heat \ transport$
 - The world’s oceans are the largest sink of heat (90%), followed by the land (5%), ice melt (3%), atmosphere (1%)

- EEI measurement from Space?
 - Sea level budget using geodetic observations (indirect)
 - Radiation pressure acting on LEO satellites (direct)
Sea level budget

Total sea level change = Ocean mass change + Steric change (+ geophysical corrections)

Thermal expansion (thermosteric change) = Total sea level change – Ocean mass change (+ geophysical corrections)

- **Altimetry**: Copernicus DUACS Delayed-Time DT-2018
- **GRACE and GRACE-FO**: Release 6 JPL GRACE and GRACE-FO mascon V02 solutions
 - **Argo only and Argo + other in-situ (upper 2000m)**: SIO, JAMSTEC, BOA, EN4, Ishii et al., Cheng et al., NOAA
 - **Glacial isostatic adjustments + contemporary ocean-bottom deformation**: GIA prediction ensemble (Caron et al., 2018); GRD effects (Frederikse et al., 2017)
 - **Large ensemble** approach provides robust central estimates plus uncertainties (90% CI).
How do we get from steric sea level change to ocean heat storage?
The ocean’s expansion efficiency of heat ε

$\varepsilon = 0.52 \pm 0.1 \text{ Wm}^{-2}/\text{mmyr}^{-1} (0.12 \text{ mm ZJ}^{-1})$

- Similar for both upper ocean (0-2000m) and full ocean column
- Time variability negligible?
Sea level budget and *geodetic* ocean heat uptake

Steric sea level change = 1.67 ± 0.43 mmyr⁻¹
(geodetic) **OHU** = 0.86 ± 0.24 Wm⁻²

OHU + non-oceanic heat uptake = **EEI** = 0.94 ± 0.25 Wm⁻²
Sea level budget and *geodetic* ocean heat uptake

OHU geodetic – OHU in-situ = deep OHU?

Residual is 0.25 Wm\(^{-2}\) >> current knowledge (e.g. Desbruyer et al., 2016)
Time variability of EEI and ocean heat uptake (dOHC/dt monthly, then averaged to annual mean OHU)

Altimetry-GRACE and CERES suggest increase in heat uptake at 0.14 and 0.05 W m\(^{-2}\)yr\(^{-1}\)

On the global scale, this co-variability is expected and represents an additional form of validation!

But variability is larger in ocean data?
OHU agrees well with CERES net flux when derived from annual mean OHC (here calculated at 6-months intervals):

Loeb et al., 2021
Geodetic OHU variability decreases by more than 50% when derived from annual mean OHC...
CERES surrogate analysis suggests OHU should be derived from monthly OHC to reproduce annual mean EEI variability:

Integrate monthly CERES EBAF net flux to heat content in J

Derive EEI from monthly vs. annual mean heat content: monthly integration followed by annual averaging retains EEI variability
CERES surrogate analysis suggests OHU should be derived from monthly OHC to reproduce annual mean EEI variability:

Question remains: Which EEI variability is to trust? Can Libera shed light?

Integrate monthly CERES EBAF net flux to heat content in J

Derive EEI from monthly vs. annual mean heat content: monthly integration followed by annual averaging retains EEI variability
Can Libera improve estimates of EEI and its variability?

- Libera accuracy is more than doubled, but still not good enough to deduce absolute magnitude of EEI: $\pm 1.5 \text{ Wm}^{-2}$
- But can predicted radiometric improvements yield insight into realism of EEI variability?

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Performance</th>
<th>Predicted Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiometer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Field of view</td>
<td>25 km at nadir</td>
<td>24 km at nadir</td>
</tr>
<tr>
<td>Cross-track width</td>
<td>Limb-to-Limb</td>
<td>Limb-to-Limb</td>
</tr>
<tr>
<td>Spectral range</td>
<td>LW: 5-50 µm, SW: 0.3-5 µm, TOT: 0.3 - 100 µm</td>
<td>LW: 5-50 µm, SW: 0.3-5 µm, TOT: 0.3 - 100 µm</td>
</tr>
</tbody>
</table>

- Radiometric Accuracy
 - LW: 0.5%, SW: 1%, TOT: 0.5%
 - LW: 0.24%, SW: 0.17%, TOT: 0.22%

- Radiometric Precision
 - LW: $<0.45 \text{ Wm}^{-2}\text{sr}^{-1}$, SW: $<0.2 \text{ Wm}^{-2}\text{sr}^{-1}$, TOT: $<0.3 \text{ Wm}^{-2}\text{sr}^{-1}$
 - LW: $0.11 \text{ Wm}^{-2}\text{sr}^{-1}$, SW: $0.11 \text{ Wm}^{-2}\text{sr}^{-1}$, TOT: $0.11 \text{ Wm}^{-2}\text{sr}^{-1}$

- Linearity
 - $<0.15\%$ over dynamic range
 - $<0.1\%$ over dynamic range

- Scanning mode
 - Cross-track
 - Cross-track, azimuthal
Conclusions

- We estimate ocean heat uptake using total sea level and ocean mass observations and yield an EEI larger than from hydrography.
- Larger EEI is supported by few other studies, e.g. using ocean reanalysis (Trenberth et al., 2016; 2020) or changes in atmospheric composition (Resplandy et al., 2019).
- Sea level budget is only barely closed in recent years and requires reevaluation of all data products.
- EEI is increasing: global warming is accelerating
- Co-variability between CERES and OHU is given, but amplitude mismatch is under investigation – likely a result of OHU derivation
Back up
Figure S4. The effect of assuming a constant expansion efficiency on OHC and OHU estimates. Panel a. OHC and panel b. OHU. The black line shows the direct estimate of OHC and OHU from hydrographic observations. The blue line shows the estimated OHC and OHU using the steric changes estimated from hydrography converted to OHC and OHU using a time-mean expansion efficiency of 0.13 +/- 0.01 ZJ yr^-1.
Regional sea level budget

- Residual steric expansion mainly in Indo-Pacific
- Pattern of positive deep steric changes is unrealistic; cannot be explained by deep OHS alone
- This large deep OHS (0.25 Wm\(^{-2}\) compared to 0.06 in-situ) is unlikely.

(Meyssignac et al., 2019)
“Non – closure” of the global sea level budget

- ... results in a larger EEI = 0.94 Wm\(^{-2}\) (geodetic; in-situ = 0.76 Wm\(^{-2}\))
- Discrepancy to in-situ estimates is unlikely due to enhanced deep OHS and is increasing in recent years
- Other unlikely sources of error:
 - Ocean mass budget is closed
 - Altimetry is reliable
 - Geophysical corrections are state-of-the-art and physically necessary. Uncertainties are incorporated in sea level estimate: 4.05 [3.68 4.40] mmyr\(^{-1}\).
- Previous studies find tighter closure, but over different time period, using outdated GRACE solutions and geophysical corrections.
- No obvious error source: EEI might be larger than expected from perspective of *geodetic* sea level budget approach
- In-situ sampling and mapping techniques may explain some of the discrepancy
Why do we need to know EEI?

• Global Climate Model “tuning”
 • Goal: Stable PI climate at global mean temperature of ~14 deg C
 • Tuning target: Observed long-term global mean TOA fluxes

• Adjusting observed TOA radiation fluxes
 • Calibration & algorithms introduce large uncertainty in EEI of +- 4 Wm$^{-2}$
 • Target: Observed long-term global change in planetary heat content

• Estimating and constraining Climate Feedback parameter requires high accuracy EEI variability