CERES Joint Science Team Meeting –
The Pattern Effect on
Cloud feedback in CERES

Li-Wei Chao, Jacob Muller, Andrew Dessler
Department of Atmospheric Sciences, Texas A&M University
Cloud:
Changes in clouds can amplify or dampen the global warming
Cloud Feedback

\[\Delta R_{\text{cloud}} \]

\[\Delta T_{\text{surface}} \]
Cloud Feedback

\[\Delta R_{\text{cloud}}: \]
- CERES EBAF Ed 4.1
- CRE = All-sky flux minus clear-sky flux
- adjusted for cloud masking on non-cloud feedbacks using radiative kernels

\[\Delta T_{\text{surface}}: \]
- ERA5 reanalysis

Time:
2000/03–2020/12
Cloud Feedback

\[\lambda = 0.53 \pm 0.83 \text{ W/m}^2/\text{K} \]

(90%CI)
Cloud Feedback

Period 1: 2000/03 – 2010/07
Period 2: 2010/08 – 2020/12
Cloud Feedback

\[\Delta \lambda = 1.6 \pm 1.1 \text{ W/m}^2/\text{K} \ (90\% \text{CI}) \]

Pattern Effect

Period 1: 2000/03 – 2010/07
\[\lambda = -0.45 \pm 0.85 \text{ W/m}^2/\text{K} \]

Period 2: 2010/08 – 2020/12
\[\lambda = +1.2 \pm 0.78 \text{ W/m}^2/\text{K} \]
Cloud Feedback

\[\Delta \lambda = 1.6 \pm 1.1 \text{ W/m}^2/\text{K} \text{ (90\%CI)} \]

Pattern Effect

Period 1: 2000/03 – 2010/07

Geophysical Research Letters

New Generation of Climate Models Track Recent Unprecedented Changes in Earth's Radiation Budget Observed by CERES

Norman G. Loeb, Hailan Wang, Richard P. Allan, Timothy Andrews, Kyle Armour, Jason N. S. Cole, Jean-Louis Dufresne, Piers Forster, Andrew Gettelman, Huan Guo, Thorsten Mauritsen, Yi Ming, David Paynter, Cristian Proistosescu, Malte F. Stuecker, Ulrika Willén, Klaus Wyser, ... See fewer authors

First published: 18 February 2020 | https://doi.org/10.1029/2019GL086705
Cloud Feedback

Period 1: 2000/03 – 2010/07

Period 2: 2010/08 – 2020/12

\[\Delta \lambda = 1.6 \pm 1.1 \text{ W/m}^2/\text{K} \ (90\% \text{CI}) \]

Pattern Effect

Geophysical Research Letters

New Generation of Climate Models Track Recent Unprecedented Changes in Earth's Radiation Budget Observed by CERES

Norman G. Loeb, Hailan Wang, Richard P. Allan, Timothy Andrews, Kyle Armour, Jason N. S. Cole, Jean-Louis Dufresne, Piers Forster, Andrew Gettelman, Huan Guo, Thorsten Mauritsen, Yi Ming, David Paynter, Cristian Proistosescu, Malte F. Stuecker, Ulrika Willén, Klaus Wyser, ... See fewer authors

First published: 18 February 2020 | https://doi.org/10.1029/2019GL086705
Pattern effect in CMIP6 models

26 CMIP6 pre-industrial control runs
For each model (~500 years):
Pattern effect in CMIP6 models

\[\Delta \lambda (W/m^2/K) = \lambda_a - \lambda_b (\lambda_a > \lambda_b) \]
Pattern effect in CMIP6 models

27% of $\Delta \lambda$ fall in the uncertainty range of the observations.

Observed $\Delta \lambda$ (with 90% CI)

$\Delta \lambda = 1.6 \text{ W/m}^2/\text{K}$

27% of $\Delta \lambda$ fall in the uncertainty range of the observations.
Pattern effect in CMIP6 models

$$\Delta \lambda_{\text{cloud}} = \Delta \lambda_{\text{cloud SW}} + \Delta \lambda_{\text{cloud LW}}$$
Pattern effect in CMIP6 models

\[\Delta \lambda_{\text{cloud}} = \Delta \lambda_{\text{cloud SW}} + \Delta \lambda_{\text{cloud LW}} \]
Pattern effect in CMIP6 models

\[\Delta \lambda_{\text{cloud}} = \Delta \lambda_{\text{cloud SW}} + \Delta \lambda_{\text{cloud LW}} \]
Spatial structure of pattern effect:

CERES (Period 1: 2000/03-2010/07)
\[\lambda = -0.45 \pm 0.85 \text{ W/m}^2/\text{K} \]

CERES (Period 2: 2010/08-2020/12)
\[\lambda = +1.2 \pm 0.78 \text{ W/m}^2/\text{K} \]
Spatial structure of pattern effect:

\[\Delta \left(\frac{T}{T_{\text{global}}} \right) \]

CERES (Period 1: 2000/03-2010/07)

\[\lambda = -0.45 \pm 0.85 \text{ W/m}^2/\text{K} \]

CERES (Period 2: 2010/08-2020/12)

\[\lambda = +1.2 \pm 0.78 \text{ W/m}^2/\text{K} \]
Spatial structure of pattern effect:

CERES (Period 1: 2000/03-2010/07)
$\lambda = -0.45 \pm 0.85 \text{ W/m}^2/\text{K}$

CERES (Period 2: 2010/08-2020/12)
$\lambda = +1.2 \pm 0.78 \text{ W/m}^2/\text{K}$

Mauritsen (2016), Zhou et al. (2017)
Spatial structure of pattern effect:

CERES (Period 1: 2000/03-2010/07)
$\lambda = -0.45 \pm 0.85 \text{ W/m}^2/\text{K}$

CERES (Period 2: 2010/08-2020/12)
$\lambda = +1.2 \pm 0.78 \text{ W/m}^2/\text{K}$

Mauritsen (2016), Zhou et al. (2017)
Spatial structure of pattern effect:

CERES (Period 1: 2000/03-2010/07)
\[\lambda = -0.45 \pm 0.85 \text{ W/m}^2/\text{K} \]

CERES (Period 2: 2010/08-2020/12)
\[\lambda = +1.2 \pm 0.78 \text{ W/m}^2/\text{K} \]

Mauritsen (2016), Zhou et al. (2017)
Spatial structure of pattern effect: CERES observations vs. CMIP6 models
Spatial structure of pattern effect:
CERES observations vs. CMIP6 models

\[\Delta(T/T_{\text{global}}) \]
Spatial structure of pattern effect:
CERES observations vs. CMIP6 models

\(\Delta (T/T_{\text{global}}) \)
Spatial structure of pattern effect: CERES observations vs. CMIP6 models

Δ(T/global) − λ

Geophysical Research Letters

New Generation of Climate Models Track Recent Unprecedented Changes in Earth's Radiation Budget Observed by CERES

Norman G. Loeb, Hailan Wang, Richard P. Allan, Timothy Andrews, Kyle Armour, Jason N. S. Cole, Jean-Louis Dufresne, Piers Forster, Andrew Gettelman, Huan Guo, Thorsten Mauritsen, Yi Ming, David Paynter, Cristian Proistosescu, Malte F. Stuecker, Ulrika Willén, Klaus Wyser, ... See fewer authors
Conclusions

✓ Cloud feedbacks are dependent on the surface temperature warming pattern, which is known as pattern effect.

✓ We found a large pattern effect on cloud feedback in CERES data
 o related to the temperature pattern over East Pacific

✓ The CMIP6 models can reproduce the pattern effect with similar magnitude and main features of spatial structure
Supplement
CERES EBAF Ed 4.1: 2000/03-2020/12 (color shading)
CMIP6: ensemble mean of 20-yr feedbacks (black lines)
(a) The ensemble-average feedback differences between 2000-year control run and 68 members of 1%CO₂ ensemble. For the control run, the values are averaged cloud feedbacks derived from non-overlapping 20-year segments. For the 1%CO₂ ensemble, the 20-year period that has ensemble averaged warming of 0.8 K is first identified. The values are the ensemble average of 20-year cloud feedbacks from each member. The uncertainty is 90% confidence intervals. (b-d) The spatial pattern of cloud, cloud SW, cloud LW feedback differences between control run and 1%CO₂ ensemble (color) and the feedbacks from control run (black lines).
Spatial structure of pattern effect:
CERES observations vs. CMIP6 models

\(\Delta (T/T_{\text{global}}) \)

\(\Delta \Lambda \)