Libera's split-shortwave irradiance inversion: concept and initial analysis

Jake Gristey

Cooperative Institute for Research in Environmental Sciences
NOAA Chemical Sciences Laboratory

Thanks to: Sebastian Schmidt, Maria Hakuba, Bruce Kindel, Dan Feldman, Xianglei Huang + extended Libera science team
Outline

• Background
 ➢ Shortwave Angular Distribution Model (ADM) basics
 ➢ The challenge of split-shortwave ADMs for Libera

• Concept
 ➢ Proposed approach
 ➢ Utilizing the Libera camera

• Initial analysis
 ➢ Wavelength-to-split-shortwave relationships
 ➢ Scene property dependence

• Machine learning for imager-independent split-shortwave fluxes
Outline

• Background
 ➢ Shortwave Angular Distribution Model (ADM) basics
 ➢ The challenge of split-shortwave ADMs for Libera

• Concept
 ➢ Proposed approach
 ➢ Utilizing the Libera camera

• Initial analysis
 ➢ Wavelength-to-split-shortwave relationships
 ➢ Scene property dependence

• Machine learning for imager-independent split-shortwave fluxes

Work-in-progress
Shortwave radiance-to-flux conversion: the basics

Solar-viewing geometry

- Solar zenith angle (θ_s)
- Viewing zenith angle (θ_v)
- Relative azimuth angle (ϕ)

Radiance, $I(\theta_s, \theta_v, \phi)$

Angular Distribution Model (ADM)

Flux, $F(\theta_s)$

Scene type
Shortwave radiance-to-flux conversion: the basics

Solar-viewing geometry
- Solar zenith angle (θ_s)
- Viewing zenith angle (θ_v)
- Relative azimuth angle (ϕ)

![Diagram of solar viewing geometry]

Radiance, $I(\theta_s, \theta_v, \phi)$

Angular Distribution Model (ADM)

Flux, $F(\theta_s)$

Scene type

$$F(\theta_s) = \int_0^{2\pi} \int_0^{\pi/2} I(\theta_s, \theta_v, \phi) \cos \theta_v \sin \theta_v \, d\theta_v \, d\phi$$
Shortwave radiance-to-flux conversion: the basics

Solar-viewing geometry

- Solar zenith angle (θ_s)
- Viewing zenith angle (θ_v)
- Relative azimuth angle (ϕ)

Radiance, $I(\theta_s, \theta_v, \phi)$

Scene type

Flux, $F(\theta_s)$

$F(\theta_s) = \int_0^{2\pi} \int_0^{\pi/2} I(\theta_s, \theta_v, \phi) \cos \theta_v \sin \theta_v \, d\theta_v \, d\phi$

- **Isotropic:** $\pi I(\theta_s, \theta_v, \phi)$
- **Anisotropic:** $\frac{\pi I(\theta_s, \theta_v, \phi)}{R(\theta_s, \theta_v, \phi)}$

$R(\theta_s, \theta_v, \phi)$ is the anisotropic factor

ADMs are the set of anisotropic factors $R(\theta_s, \theta_v, \phi)$ for each scene type.
Generating anisotropic factors

Example: $\theta_s = 30$-40°, ocean, clear-sky, wind speed $<$3.5 m s$^{-1}$

From CERES TRMM ADMs: *Loeb et al., JAM, 2003a,b*
Generating anisotropic factors

Example: $\theta_s, 30-40^\circ$, ocean, clear-sky, wind speed <3.5 m s$^{-1}$

From CERES TRMM ADMs: Loeb et al., JAM, 2003a,b
Generating anisotropic factors

Example: $\theta_s, 30-40^\circ$, ocean, clear-sky, wind speed <3.5 m s$^{-1}$

From CERES TRMM ADMs: Loeb et al., JAM, 2003a,b
Generating anisotropic factors

Example: $\theta_s = 30\text{-}40^\circ$, ocean, clear-sky, wind speed <3.5 m s$^{-1}$

From CERES TRMM ADMs: Loeb et al., JAM, 2003a,b
Generating anisotropic factors

Example: θ_s, 30-40°, ocean, clear-sky, wind speed <3.5 m s$^{-1}$

\[R(\chi, \theta_V, \phi) = \frac{\pi I(\chi, \theta_V, \phi)}{F(\chi)} \]

For θ_V bin i and ϕ bin j:

\[R_{i,j} = \frac{\pi I_{i,j}}{F} \]

\[F = \int_0^{2\pi} \int_0^{\pi/2} I(\theta_V, \phi) \cos \theta_V \sin \theta_V \, d\theta_V \, d\phi \]

\[\approx \sum_{i=1}^{N_i} w_i \sum_{j=1}^{N_j} w_j \overline{l_{i,j}} \] (or similar functional form)

From CERES TRMM ADMs: Loeb et al., JAM, 2003a,b
Challenge for Libera split-shortwave ADMs

- Directly observed split-shortwave ADMs do not currently exist.
- How will Libera split-shortwave radiance be converted to flux?
Challenge for Libera split-shortwave ADMs

- Directly observed split-shortwave ADMs do not currently exist.

- How will Libera split-shortwave radiance be converted to flux?
 - Repeat RAPS mode with new split-shortwave radiometer?
 - Takes a long time. e.g. ADMs from Terra/Aqua use 6 years and 8 months of RAPS data *Su et al, AMT, 2015a,b*
 - Continuity best served by cross-track sampling.

OG1: Provide seamless continuity of the Clouds and the Earth’s Radiant Energy System (CERES) ERB Climate data record (CDR).

OG2: Advance the development of a self-contained, innovative & affordable observing system.
Challenge for Libera split-shortwave ADMs

- Directly observed split-shortwave ADMs do not currently exist.

- How will Libera split-shortwave radiance be converted to flux?
 - Repeat RAPS mode with new split-shortwave radiometer?
 - Takes a long time. e.g. ADMs from Terra/Aqua use 6 years and 8 months of RAPS data *Su et al, AMT, 2015a,b*
 - Continuity best served by cross-track sampling.
 - Spectrally adjust existing total SW ADMs?
 - Concerns relying on RTM. e.g., 3D cloud radiative effects *Ham et al., 2014* and their spectral structure *Song et al, ACP, 2016*
 - Need detailed scene information to apply latest ADMs.

OG1: Provide seamless continuity of the Clouds and the Earth’s Radiant Energy System (CERES) ERB Climate data record (CDR).

OG2: Advance the development of a self-contained, innovative & affordable observing system.
Challenge for Libera split-shortwave ADMs

- Directly observed split-shortwave ADMs do not currently exist.

- How will Libera split-shortwave radiance be converted to flux?
 - Repeat RAPS mode with new split-shortwave radiometer?
 - \[\text{✗ Takes a long time. e.g. ADMs from Terra/Aqua use 6 years and 8 months of RAPS data Su et al, AMT, 2015a,b} \]
 - \[\text{✗ Continuity best served by cross-track sampling.} \]
 - Spectrally adjust existing total SW ADMs?
 - \[\text{✗ Concerns relying on RTM. e.g., 3D cloud radiative effects Ham et al., 2014 and their spectral structure Song et al, ACP, 2016} \]
 - \[\text{✗ Need detailed scene information to apply latest ADMs.} \]
 - Wide field-of-view camera for new split-shortwave ADM development with simpler scene ID.
 - \[\text{✔ addresses above issues. To be demonstrated in practice..} \]

OG1: Provide seamless continuity of the Clouds and the Earth’s Radiant Energy System (CERES) ERB Climate data record (CDR).

OG2: Advance the development of a self-contained, innovative & affordable observing system.
Libera’s split-shortwave ADM approach

1. OSSE “prior” split-shortwave ADMs [Daniel Feldman]
2. Wide-field-of-view camera will provide dense angular sampling for observational basis
3. Ultimately, constrain with azimuthal scans whenever available e.g. calibration maneuvers [Bruce Kindel]

Credit: Stephane Beland
Libera’s split-shortwave ADM approach

1. OSSE “prior” split-shortwave ADMs [Daniel Feldman]
2. Wide-field-of-view camera will provide dense angular sampling for observational basis
3. Ultimately, constrain with azimuthal scans whenever available e.g. calibration maneuvers [Bruce Kindel]

Credit: Stephane Beland
Convolve with Libera Point Spread Function

Instantaneous angular sampling
MODIS/VIIRS (cross track scan)
MISR (9 fixed angles)
Libera WFOV camera (entire Earth disk)
Compromise: focus on ERBE-like ADMs (initially)

- A key motivation for camera is to “develop self-contained system”
 - 12 scene types: appropriate for scene ID from a single wavelength
 - Based on imaging at CERES/Libera scales; not ERBE approach
 - Could be extended in future “ERBE+” e.g., cloud optical depth retrieval

<table>
<thead>
<tr>
<th>Cloud fraction</th>
<th>Surface type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clear-sky (0-5%)</td>
<td>Ocean</td>
</tr>
<tr>
<td>2</td>
<td>Land</td>
</tr>
<tr>
<td>3</td>
<td>Snow</td>
</tr>
<tr>
<td>4</td>
<td>Desert</td>
</tr>
<tr>
<td>5</td>
<td>Land-ocean mix</td>
</tr>
<tr>
<td>6</td>
<td>Partly cloudy (5-50%)</td>
</tr>
<tr>
<td>7</td>
<td>Land or desert</td>
</tr>
<tr>
<td>8</td>
<td>Land-ocean mix</td>
</tr>
<tr>
<td>9</td>
<td>Mostly cloudy (50-95%)</td>
</tr>
<tr>
<td>10</td>
<td>Land or desert</td>
</tr>
<tr>
<td>11</td>
<td>Land-ocean mix</td>
</tr>
<tr>
<td>12</td>
<td>Overcast</td>
</tr>
<tr>
<td></td>
<td>All</td>
</tr>
</tbody>
</table>

Suttles et al., NASA Tech Rep, 1988
Compromise: focus on ERBE-like ADMs (initially)

- A key motivation for camera is to “develop self-contained system”
 - 12 scene types: appropriate for scene ID from a single wavelength
 - Based on imaging at CERES/Libera scales; not ERBE approach
 - Could be extended in future “ERBE+” e.g., cloud optical depth retrieval
 Nataraja et al., in prep. 2021

- Solar-viewing geometry
 - 10 θ_S bins
 - 7 θ_V bins
 - 8 ϕ bins
 - Anticipate finer resolution bins in future

<table>
<thead>
<tr>
<th>Cloud fraction</th>
<th>Surface type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Clear-sky (0-5%)</td>
<td>Ocean</td>
</tr>
<tr>
<td>2</td>
<td>Land</td>
</tr>
<tr>
<td>3</td>
<td>Snow</td>
</tr>
<tr>
<td>4</td>
<td>Desert</td>
</tr>
<tr>
<td>5</td>
<td>Land-ocean mix</td>
</tr>
<tr>
<td>6 Partly cloudy (5-50%)</td>
<td>Ocean</td>
</tr>
<tr>
<td>7</td>
<td>Land or desert</td>
</tr>
<tr>
<td>8</td>
<td>Land-ocean mix</td>
</tr>
<tr>
<td>9 Mostly cloudy (50-95%)</td>
<td>Ocean</td>
</tr>
<tr>
<td>10</td>
<td>Land or desert</td>
</tr>
<tr>
<td>11</td>
<td>Land-ocean mix</td>
</tr>
<tr>
<td>12 Overcast</td>
<td>All</td>
</tr>
</tbody>
</table>

Suttles et al., NASA Tech Rep, 1988
Optimizing the Libera camera for ADMs: OSSE data

Cloud fraction (CSIRO)

- Climate model output
 - Monthly mean
 - Jan 2040
 - 96 lat × 192 lon = 18,432 columns

Credit: Dan Feldman

Feldman at al., JGR, 2011a&b;
J. Clim., 2013;
Geosci. Mod. Dev., 2015;
JGR, 2021 (in review)
Optimizing the Libera camera for ADMs: OSSE data

Cloud fraction (CSIRO)

- Climate model output
 - Monthly mean
 - Jan 2040
 - 96 lat × 192 lon = 18,432 columns

- Column and surface properties ingested into offline radiative transfer
 - Output TOA nadir spectral radiance from 300-2500 nm at 5 nm spectral resolution

Credit: Dan Feldman

Feldman at al., JGR, 2011a&b;
J. Clim., 2013;
Geosci. Mod. Dev., 2015;
JGR, 2021 (in review)
Optimizing the Libera camera for ADMs: OSSE data

- Climate model output
 - Monthly mean
 - Jan 2040
 - 96 lat × 192 lon = 18,432 columns

- Column and surface properties ingested into offline radiative transfer
 - Output TOA nadir spectral radiance from 300-2500 nm at 5 nm spectral resolution

Credit: Dan Feldman
Feldman at al., JGR, 2011a&b; J. Clim., 2013; Geosci. Mod. Dev., 2015; JGR, 2021 (in review)
Camera wavelength: high correlation with sub-band

Note: nadir only

- Single wavelength camera acts as a proxy for one of the split channels
 - Need high correlation between single wavelength and NIR or VIS
Camera wavelength: high correlation with sub-band

Note: nadir only

- Single wavelength camera acts as a proxy for one of the split channels
 - Need high correlation between single wavelength and NIR or VIS

- MISR 865 nm correlates well with CERES total SW

 Corbett and Su, AMT, 2015
Camera wavelength: high correlation with sub-band

Note: nadir only

- Single wavelength camera acts as a proxy for one of the split channels
 - Need high correlation between single wavelength and NIR or VIS

- MISR 865 nm correlates well with CERES total SW

 Corbett and Su, AMT, 2015
Camera wavelength: high correlation with sub-band

- Single wavelength camera acts as a proxy for one of the split channels
 - Need high correlation between single wavelength and NIR or VIS

- MISR 865 nm correlates well with CERES total SW
 - *Corbett and Su, AMT, 2015*

- Initial OSSE data here suggests 865 nm may not be optimal for NIR
 - Highest correlation is ~555 nm with VIS
Correlations by scene type: 865 nm vs. NIR

Note: nadir only

- Sub-band correlations do not hold equally well across all scene types
- Conversion between camera wavelength -> sub-band should be a function of scene type and solar geometry
Correlations by scene type: 865 nm vs. NIR

Note: nadir only

- Sub-band correlations do not hold equally well across all scene types
- Conversion between camera wavelength -> sub-band should be a function of scene type and solar geometry
- Within scene differences persist at similar SZA
Correlations by scene type: 865 nm vs. NIR

Note: nadir only

- Sub-band correlations do not hold equally well across all scene types
- Conversion between camera wavelength -> sub-band should be a function of scene type and solar geometry
- Within scene differences persist at similar SZA
 - Above cloud water vapor
 - Cloud height (phase)
Correlations by scene type: 555 nm vs. VIS

Note: nadir only!

- Much tighter relationship between 555 nm and VIS
- No “break down” for any scene types
Correlations by scene type: 555 nm vs. VIS

Note: nadir only!

- Much tighter relationship between 555 nm and VIS
- No “break down” for any scene types
- **Issue 1:** lack extremes of cloud fraction
 - Monthly-mean, ~1 deg
Correlations by scene type: 555 nm vs. VIS

- Much tighter relationship between 555 nm and VIS
- No “break down” for any scene types

- Issue 1: lack extremes of cloud fraction
 - Monthly-mean, ~1 deg

- Issue 2: angular variability

Credit: Sebastian Schmidt, Hong Chen
Independent Libera split-shortwave fluxes

• For a single wavelength camera, a visible wavelength is most appropriate to generate VIS sub-band ADMs with ERBE scene types
 ➢ Additional scene segregation e.g. CERES is expected to be more important for NIR sub-band

• How to derive a self-contained Libera NIR flux?
Independent Libera split-shortwave fluxes

• For a single wavelength camera, a visible wavelength is most appropriate to generate VIS sub-band ADMs with ERBE scene types
 ➢ Additional scene segregation e.g. CERES is expected to be more important for NIR sub-band

• How to derive a self-contained Libera NIR flux?

 \[
 \text{NIR flux} = \text{SW flux} - \text{VIS flux}
 \]

 Directly derived with new ADMs

 Wait for RBSP SW flux? \(\times\) relies on imager

 Calculate new ERBE-like SW or NIR ADMs from camera? \(\times\) camera not a good proxy

 Use existing ERBE SW ADMs? \(\checkmark\) yes, but expect larger uncertainty

 Determine CERES-like scene type using machine learning? \(\checkmark\) maybe..

Loeb et al., JAOT, 2007
Machine learning CERES-like scene type

- Scene type predicted with ~95% accuracy for almost all scenes, many scenes >99% (excludes very thin cloud)
Machine learning CERES-like scene type

- Scene type predicted with ~95% accuracy for almost all scenes, many scenes >99% (excludes very thin cloud)
- Footprint radiances are most important; adding camera radiances (ie. imaging of the footprint) should yield further improvements
Summary and conclusions

- New split-shortwave ADMs are required for Libera, which will be generated from the wide-field-of-view camera.

- A camera wavelength of 555 nm is optimal for VIS ADMs, which are well suited to simpler ERBE-like scene types.

- One promising approach to determine NIR flux is machine learning of CERES-like scene type.
Camera angular sampling

- Preliminary Libera camera sampling pattern at center of CERES-TRMM angular bins

- An example of randomization to sample angular variability within angular bins
Appropriateness of a camera for generating ADMs

- Is a single wavelength sufficient to capture angular distribution?
 - Cloud ($\tau=10$) over ocean
 - $\theta_s=20^\circ$
 - $\theta_v=45^\circ$

Credit: Sebastian Schmidt, Hong Chen

- Can a camera obtain data with sufficient quality?
 - Radiometric accuracy requirement: 5 %
 - Uniformity requirement: 1.5 %

Credit: Bruce Kindel
ERBE scene type from OSSEs

- All surfaces considered “land” except ocean, snow, desert, land-ocean mix

- Only select surface type with >90% in model grid
 - For land-ocean mix only select 30-70% ocean

Table 1. Scene Types for Angular Models

<table>
<thead>
<tr>
<th>Scene</th>
<th>Cloud coverage, percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clear over ocean</td>
<td>0 to 5</td>
</tr>
<tr>
<td>Clear over land</td>
<td></td>
</tr>
<tr>
<td>Clear over snow</td>
<td></td>
</tr>
<tr>
<td>Clear over desert</td>
<td></td>
</tr>
<tr>
<td>Clear over land-ocean mix</td>
<td></td>
</tr>
<tr>
<td>Partly cloudy over ocean</td>
<td>5 to 50</td>
</tr>
<tr>
<td>Partly cloudy over land or desert</td>
<td>5 to 50</td>
</tr>
<tr>
<td>Partly cloudy over land-ocean mix</td>
<td>5 to 50</td>
</tr>
<tr>
<td>Mostly cloudy over ocean</td>
<td>50 to 95</td>
</tr>
<tr>
<td>Mostly cloudy over land or desert</td>
<td>50 to 95</td>
</tr>
<tr>
<td>Mostly cloudy over land-ocean mix</td>
<td>50 to 95</td>
</tr>
<tr>
<td>Overcast</td>
<td>95 to 100</td>
</tr>
</tbody>
</table>
Cloud height separates “arms” very well

Two reasons:
1. Above cloud water vapor
2. Cloud phase

Note: nadir only

Gristey et al., J. Clim., 2019

Pilewskie and Twomey, JAS, 1987
ERBE SW ADM examples
CERES-TRMM SW ADM examples