A Status Update for the FLASHFlux/SOFA Working Group

Paul Stackhouse (NASA LaRC)

PC Sawaengphokhai, Ryan Scott, and Anne Wilber (SSAI)

CERES Team members: Katie Dejwakh, Dave Doelling (LaRC), Walt Miller, Pam Mylniczak, Victor Sothcott, Cathy Nguyen (SSAI)

POWER Team: Bradley MacPherson (Booz-Allen-Hamilton)

Tonya Davenport and Fenny Wang and the Atmospheric Science Data Center Team (SSAI)

Acknowledging Recent Retirees: David Kratz, Shashi Gupta and now Anne Wilber
CERES TSI: From SORCE to TSIS

- CERES Ed4 normalizes to SORCE v15; TSIS-1 TIM v2 ~0.4 W m^-2 > SORCE v15
- TSIS-1 team releases TIM v3 data set on May 26, 2020: v3 - v2 ~ 0.4 W m^-2
Unfortunately, CERES TSI production missed the TIM v3 delivery until January. …

0.4 W m⁻² discontinuity

Corrected and reprocessed in Jan 2021
CERES TSI: From SORCE to TSIS

- Derived new normalization coefficients to SORCE v15
- Better QC instituted to prevent reoccurrence
- Details on CERES web site at: https://ceres.larc.nasa.gov/data/general-product-info/#total-solar-irradiance-tsi-information

Also, DQS updated for following CERES products:
- SSF, SSF1deg affected from 5/26/20 through 11/30/20
- SYN1Deg and EBAF affected 5/26/20 – 7/31/20.
CERES FLASHFlux Overview

• **FLASHFlux Overview**
 – Uses CERES based production system through inversion
 – Periodic calibration updates projected forward; running 3-day TISA
 – LPSA/LPLA SOFA algorithms for surface fluxes

• **FLASHFlux Latency Objectives**
 – SSF products within 4 days
 – Global 1x1 daily averages from FF TISA; goal: 6-7 days latency

• **FLASHFlux Usages**
 – Primarily used for applied science and education (i.e., POWER and Globe Clouds)
 – Supports also QC for selected missions (e.g., NOAA NESDIS)
 – TOA gridded fluxes; normalized to TOA EBAF for annual “State of the Climate” assessments (most recent update through April 2021).
FLASHFlux Data Delivery via POWER Web Services Portal
(2020/05/01 to 2021/04/30)

All FLASHFlux Orders Delivered via POWER

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>Monthly</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unique Users IPs</td>
<td>~116 K</td>
<td>~11,150</td>
</tr>
<tr>
<td>Requests</td>
<td>~ 55 M</td>
<td>~4.6 M</td>
</tr>
</tbody>
</table>

FLASHFlux Low Latency Orders Delivered via POWER

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>Monthly</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unique Users IPs</td>
<td>~33.4 K (29%)</td>
<td>~3,160 (28%)</td>
</tr>
<tr>
<td>Requests</td>
<td>~36.5 M (66%)</td>
<td>~3.0 M (66%)</td>
</tr>
</tbody>
</table>

Dot density map showing locations of users (red) and data request locations (white). Brighter colors show larger frequency at that location.
To support renewable energy for remote navigation aids, IALA (International Association of Marine Aids to Navigation and Lighthouse Authorities) publishes a solar and storage system design guide and sizing tool—which rely on NASA POWER and thus CERES FF as a core input.

Global data and specialized parameters integrate into IALA’s tool in ways that other irradiance-only datasets cannot.

Sample critical Inputs:
- Daily global all-sky insolation
- Long-term statistics:
 - “black-sky days” parameter informs battery backup decisions using daily irradiance variability
 - tilted irradiance estimates including optimal tilt angle estimates

(Courtesy ICF POWER Use Case Report, 2021)
“State of Climate” 2020 submitted to BAMS in March

2020 highlights

- Only needed 1 month of FF since EBAF deliveries only 2-3 months lags
- Changes after July: seems to correspond to transition to La Nina
 - OLR anomalies rose to ~ +1.0 W m⁻² dropped in July, but rose toward end of 2020
 - Net RSW (absorbed SW) anomalies reduce to ~0.0 W m⁻²
 - Total Net holds drops to near -1 W m⁻² by end of 2020.
Regional year to year differences show La Nina signature

<table>
<thead>
<tr>
<th></th>
<th>One Year Change (2020 minus 2019) (W m$^{-2}$)</th>
<th>2020 Anomaly (Relative to Climatology) (W m$^{-2}$)</th>
<th>Climatological Mean (2001 to 2019) (W m$^{-2}$)</th>
<th>Interannual Variability (2001 to 2019) (W m$^{-2}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OLR</td>
<td>0.20</td>
<td>+0.65</td>
<td>240.20</td>
<td>±0.65</td>
</tr>
<tr>
<td>TSI</td>
<td>0.05</td>
<td>−0.05</td>
<td>340.00</td>
<td>±0.15</td>
</tr>
<tr>
<td>RSW</td>
<td>0.40</td>
<td>−0.70</td>
<td>99.00</td>
<td>±1.00</td>
</tr>
<tr>
<td>TSI-RSW</td>
<td>-0.40</td>
<td>+0.65</td>
<td>241.00</td>
<td>±0.95</td>
</tr>
<tr>
<td>Net</td>
<td>−0.60</td>
<td>+0.00</td>
<td>0.80</td>
<td>±0.80</td>
</tr>
</tbody>
</table>
FLASHFlux Status

- **Production with v4A Begun (since Aug 1, 2020)**
 - Operational FF v4A SSF and TISA v4A: SSF Terra/Aqua through 5/8; TISA through 5/6
 - Reprocessed with Version 4A from Jan 1, 2019 through July 2020 for validation

- **Validation and Assessment**
 - DQS for SSF and TISA compare FF to CERES Ed4
 - SSF relative to CRS, CERES Ed4A SSF (SOFA) and FF and BSRN (Ryan’s talk)
 - TISA Daily averages relative to BSRN for 2019 and 2020

- **FLASHFlux Modernization and Updates**
 - Evaluating ML based algorithms for future FF SSF data products (Ryan’s talk)
 - Migration to CERES CATALYST for future production managing (Katie’s talk)
 - NOAA-20 path tested through inversion; upgrading TISA to accommodate
 - New GEOS-IT sample data coming; will replace current FP-IT in FF MOA (June ?)

- **FLASHFlux Information & Data Provision Through ...**
 - Daily and monthly data available in internal subsetter; internal team web site
 - CERES web site and subsetter both SSF and TISA, ASDC (via EarthData) and POWER
v4A operational in Sep 2020

Success rate % of time < 6 (dark blue) or 7 days (light blue)

Only 4 months reached 90% of days at 7 day latency

Lags due to: maneuvers, ASDC updates/outages
TOA Anomaly Time Series Through 4/21

TOA FF Flux anomaly update through 4/21 (EBAF through 2/21):

Last few months:

- OLR anomalies peak in 2/21 but decrease since
- Net RSW (absorbed SW) increased after Dec >1.0 W m\(^{-2}\) in Mar ‘21; less April
- Total Net near +1 W m\(^{-2}\) in March/April 2021.

NOAA CPC ENSO April 8: “A transition from La Niña to ENSO-Neutral is likely in the next month or so, with an 80% chance of ENSO-neutral during May-July 2021.”
Ensemble FLASHFlux LW and SW Daily Average Comparisons to BSRN Measurements (2019-2020)

LW: Bias -1.8 W m\(^{-2}\)
RMS 17.2 W m\(^{-2}\)

SW: Bias -2.4 W m\(^{-2}\)
RMS 39.4 W m\(^{-2}\)

Histograms show peaked, relatively symmetric distributions, median bias is negative bias for SW, LW
FLASHFlux Validation: Ocean Buoy Fluxes

Ensemble FLASHFlux LW and SW Daily Average Comparisons to Ocean Buoy Flux Measurements (2019-2020)

LW: Bias 1.0 W m\(^{-2}\)
RMS 12.4 W m\(^{-2}\)

SW: Bias 6.8 W m\(^{-2}\)
RMS 35.6 W m\(^{-2}\)

Histograms show peaked, relatively symmetric distributions, median bias is centered on near zero
FLASHFlux v4A TISA Daily Average Fluxes (2019 – 2020)

<table>
<thead>
<tr>
<th>Region Type</th>
<th>LW Bias</th>
<th>LW RMS</th>
<th># LW Pairs</th>
<th>SW Bias</th>
<th>SW RMS</th>
<th># SW Pairs</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Ensemble</td>
<td>-1.2</td>
<td>16.4</td>
<td>25,864</td>
<td>0.6</td>
<td>38.2</td>
<td>29,505</td>
</tr>
<tr>
<td>Coastal</td>
<td>0.3</td>
<td>15.3</td>
<td>5373</td>
<td>-1.8</td>
<td>35.0</td>
<td>5238</td>
</tr>
<tr>
<td>Desert</td>
<td>-7.0</td>
<td>18.8</td>
<td>1818</td>
<td>-12.2</td>
<td>28.7</td>
<td>1801</td>
</tr>
<tr>
<td>Island</td>
<td>6.4</td>
<td>14.7</td>
<td>1668</td>
<td>18.9</td>
<td>46.8</td>
<td>1640</td>
</tr>
<tr>
<td>Continental</td>
<td>-4.0</td>
<td>18.2</td>
<td>9127</td>
<td>-3.9</td>
<td>40.3</td>
<td>9083</td>
</tr>
<tr>
<td>Polar</td>
<td>0.2</td>
<td>18.4</td>
<td>2841</td>
<td>-6.8</td>
<td>47.7</td>
<td>1941</td>
</tr>
<tr>
<td>Ocean buoys</td>
<td>1.0</td>
<td>12.4</td>
<td>5036</td>
<td>6.8</td>
<td>35.6</td>
<td>9832</td>
</tr>
</tbody>
</table>
Summary and Continuing Work

- **FLASHFlux 4A progress**
 - V4A continues in forward production mode; after back processing, begins on Jan 1, 2019
 - SSF surface fluxes show biases over oceans, polar areas relative to CRS (Ryan’s talk)
 - TISA LW and SW v4A validation reasonable bias/RMS; biases noted for some surface types

- **FLASHFlux Continuing Work**
 - Continue assessing LPSA, LPLA for improvements (jump to F/L?); ML for SSF?
 - Readying for first GOES-IT samples; MOA modifications and testing required
 - Production system improvements: hardening of current TISA code for more flexible configurations; migration to CATALYST (i.e., NOAA-20 as a test)

- **FLASHFlux Applications:**
 - Datasets continuing being distributed through POWER web services
 - CERES FF ordering past year: ~116,000 unique ISP; nearly 55M orders; orders >66% low latency

- **FLASHFlux Publications:**
 - 2020 SotC report submitted; waiting for reviews
FLASHFlux Web Sites
now moved to under CERES page

https://ceres.larc.nasa.gov/data/#fast-longwave-and-shortwave-flux-flashflux

Data also served through
https://power.nasa.gov
FLASHFlux Version 4A

<table>
<thead>
<tr>
<th>Attribute</th>
<th>FF v3C (MC6)</th>
<th>FF v4A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline 1QC</td>
<td>Previous (Terra, Aqua)</td>
<td>New calibration delivered in May; moving to quarterly update cycle (Terra, Aqua)</td>
</tr>
<tr>
<td>GEOS FP-IT input</td>
<td>GEOS 5.12.4</td>
<td>GEOS 5.12.4 (soon to be GEOS-IT)</td>
</tr>
<tr>
<td>MOA</td>
<td>Ed 4 compatible</td>
<td>Ed 4 compatible</td>
</tr>
<tr>
<td>MODIS</td>
<td>Collection 6.1</td>
<td>Collection 6.1</td>
</tr>
<tr>
<td>Clouds</td>
<td>Ed 2b w/ updated MC</td>
<td>Ed 4 w/ MC 6.1 calibration</td>
</tr>
<tr>
<td>SIBi (Snow/ICE Brightness Index)</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Inversion (improved ADMs)</td>
<td>Ed 2</td>
<td>Ed 4</td>
</tr>
<tr>
<td>Aerosols</td>
<td>MATCH climatology</td>
<td>MATCH climatology</td>
</tr>
<tr>
<td>Flux Algorithm</td>
<td>Unchanged</td>
<td>Modified LPSA (new snow/ice parameterization)</td>
</tr>
<tr>
<td>TISA</td>
<td>Ed 2</td>
<td>Compatible w/ Ed 4</td>
</tr>
<tr>
<td>Data Processed</td>
<td>SSF Terra 1/1/17 – 9/6/20; SSF Aqua & TISA (Terra+Aqua) 1/1/17 – 8/15/20</td>
<td>Operational; from Jan 1, 2019</td>
</tr>
<tr>
<td>Validation Results</td>
<td>1/1/17 – 12/31/19</td>
<td>1/1/19 – 12/31/2020</td>
</tr>
</tbody>
</table>
FLASHFlux TISA Validation: BSRN Fluxes

Ensemble FLASHFlux LW and SW Daily Average Comparisons to BSRN+Ocean Buoy Measurements (2019-2020)

LW: Bias -1.2 W m\(^{-2}\)
RMS 16.4 W m\(^{-2}\)

SW: Bias 0.6 W m\(^{-2}\)
RMS 38.2 W m\(^{-2}\)

Histograms show peaked, relatively symmetric distributions, median bias is negative bias for SW, LW