Examination of 1.24 and 1.6 micron cloud optical depth retrievals over snow and ice surfaces

Sunny Sun-Mack¹, William L. Smith, Jr.², Patrick Minnis¹, Gang Hong¹, Yan Chen¹

(1) SSAI, Hampton, VA, USA
(2) NASA Langley Research Center, Hampton, VA

CERES Science Team Meeting
Lawrence Berkeley National Laboratory, Building 66, Berkeley, CA
October 29-31, 2019
Outline

• Objectives and Background of CERES Ed4

• Evaluations → CERES Ed4 Cloud Optical Depth over Snow/Ice Appear to be High

• Approach from This Study:
 (1) Examine impact of a new ice crystal reflectance model
 (2) Examine impact of using a different wavelength channel

• With new approach, Results of Snow/Ice Cloud Optical Depth

• Comparisons with MODIS ST

• Validation with CALIPSO

• Summary & Future Plans
Objectives and Background of CERES Ed4

• Improve accuracy and reliability of cloud optical depth retrievals using CERES MODIS and VIIRS cloud algorithms

• In CERES Ed4, Cloud optical depth retrieval over snow & ice surfaces

 (1) Ice crystal reflectance model
 roughened single habit ice columns (SHM)

 (2) Channel selection:
 1.24 µm
Evaluations \Rightarrow Ed4 Cloud Optical Depth over Snow/Ice Appear to be High

Thin cirrus over snow, global

- COD extremely biased high over snow
 - COD = 12.1 vs. 0.86
- No evaluation for thick ice clouds
 - Yost et al., TGRS, 2019

Water τ over ARM NSA, over snow

- COD reasonable over NSA site
- Overcast, relatively thick clouds
 - Dong et al. JGR, 2016

- COD retrieval for liquid water clouds not reliable, probably due to uncertainty in clear-sky radiance input
 - appears to be too high on average

- COD retrieval for ice not usable, more sensitivity to clear radiance uncertainty, single habit model overestimates COD
Approach from This Study
Examine impact of a new ice crystal reflectance model

CERES Ed4
Roughened single hexagonal column (SHM)

This study
Two-habit model (THM)

Compact particle, smaller asymmetry factor, therefore smaller COD

Yang et al. 2016
Loeb et al. 2018
Approach from This Study
Examine impact of using a different wavelength channel

Spectral Snow & Ice Albedos/Reflectances

Clear-Sky Observations

- 1.24-µm snow albedo: 0.13 - 0.50
- 1.62-µm snow albedo: 0.02 – 0.19

- Surface reflectance uncertainty much higher for 1.24 µm
- Snow stronger absorber for 1.6 µm than 1.24 µm

From Platnick et al., JGR, 2001
Examine impact of using a different wavelength channel - Conti

Theoretical Clouds

- Liquid COD saturation, 1.24 µm: ~ 64-96
 1.62 µm: ~ 32-40

- Ice COD saturation, 1.24 µm: ~ 32-60
 1.62 µm: ~ 8-16

- 1.24 µm greater COD range available
- Actual saturation COD depends on particle size and angular configurations
Three Snow / Ice Cloud Optical Depth Retrievals

CERES Ed4
(1) Single Habit Model (SHM), 1.24 μm

This Study
(2) Two Habit Model (THM), 1.24 μm
(3) Two Habit Model (THM), 1.6 μm

Pixel level cases and monthly global maps & stats
RGB

Cloud Optical Depth

Terra MODIS
March 15
2009 UTC 21

Over Canada

0 0.3 0.6 1.2 2.3 4.7 9.4 18.8 37.5 75 150
Terra MODIS, Sept. 1st, 2009 UTC 10

Sea Ice (%)

Cloud Optical Depth

- Consistent optical thickness between visible and 1.6 µm

Over Southern Ocean
1.6 saturates for thick clouds

THM 1.24 has better sensitivity for thicker clouds

Over Canada

Terra MODIS, March 15, 2009 UTC 17
Ice Cloud Optical Depth Scatterplots, Terra-MODIS, March 2009

THM 1.24 vs. SHM 1.24 (Ed4)

- Forced Slope = 0.638
- R = 0.842

COD Averages
- Ed4: 8.5 (5.6)
- THM 1.24: 5.8 (3.4)
- THM 1.6: 3.5 (4.3)

THM 1.6 vs. THM 1.24

- Forced Slope = 0.526
- R = 0.528

N= 42136137.
- SHM12: 8.48 (5.55)
- THM12: 5.84 (3.41)
- Y-X: -2.64 (3.26)
- RMS: 4.19

N= 31797983.
- THM12: 6.57 (4.22)
- THM16BTempMap: 3.44 (4.29)
- Y-X: -3.13 (4.14)
- RMS: 5.19
Liquid Water Cloud Optical Depth Scatterplots, Terra-MODIS, March 2009

Forced Slope = 0.426
R = 0.491

COD Averages
1.24 (Ed4): 13.8 (11.4)
1.6: 6.6 (8.3)
Comparison with MODIS ST retrieval (1621)
Ice Cloud Optical Depth over Snow & Ice surface (Northern Polar Regions)
Terra-MODIS March 2009

Ice COD Average (0 – 30)

<table>
<thead>
<tr>
<th>Method</th>
<th>COD</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHM (1.24)</td>
<td>9.0</td>
<td>2.7</td>
</tr>
<tr>
<td>THM (1.24)</td>
<td>6.8</td>
<td>4.1</td>
</tr>
<tr>
<td>THM (1.6)</td>
<td>2.9</td>
<td>3.9</td>
</tr>
<tr>
<td>MODIS ST</td>
<td>3.3</td>
<td>3.7</td>
</tr>
</tbody>
</table>

- THM 1.6 COD comparable with MODIS ST, ~0.4 smaller than MODIS ST
- MODIS ST has more no-retrieval
Liquid Water Optical Depth over Snow & Ice surface (Northern Polar Regions)
Terra-MODIS March 2009

Water Cloud

Liquid COD Average (0 – 60)

<table>
<thead>
<tr>
<th></th>
<th>Ed4 (1.24 µm)</th>
<th>1.6 µm</th>
<th>MODIS ST (1621)</th>
</tr>
</thead>
<tbody>
<tr>
<td>COD</td>
<td>14.0 (11.2)</td>
<td>8.5 (9.9)</td>
<td>8.6 (7.9)</td>
</tr>
</tbody>
</table>

- 1.6 COD agrees with MODIS ST well
- MODIS ST has lots no-retrieval over snow covered land or call them ice
Validation with CALIPSO
Single layer, transparent, ice clouds over snow/ice

Mean COD (Ed4): 8.0 (12.5)

Mean COD (THM 1.24): 5.3 (5.5)

Mean COD (THM 1.6): 3.7 (11)

Mean COD (CALIPSO): 1.1 (0.76)

- Ed4 extremely biased high
- THM 1.6 the best choice to retrieve thin cirrus clouds
Liquid Water Clouds Optical Depth, Validation with CALIPSO, C3M, April 2009
Single layer, transparent clouds, over snow/ice

1.24 \mu m (Ed4)

1.6 \mu m

Mean COD (Ed4): 9.8 (8.6)
Mean COD (1.6): 3.4 (4.0)
Mean COD (CALIPSO): 1.3 (0.8)

• Ed4 extremely biased high
• 1.6 \mu m the best choice to retrieve thin clouds
Issue with THM 1.6
High no-retrieval percent
Terra-MODIS September 26, 2009 UTC 23

Ice Cloud
SZA=71 VZA=22 AZA=112

Tau=0.25

Over Antarctica

RGB

Water Ice No-Ret Clr

3.7 µm Temperature (K)
1.6 µm Reflectance

5.64 (µm)
16.68 (µm)
21.86 (µm)
28.40 (µm)
46.34 (µm)
65.29 (µm)
115.32 (µm)
140.15 (µm)
155.95 (µm)
GEOS4 Skin T too warm for sea ice covered ocean and some of snow covered land.

GEOS4 Skin T ok over permanent snow sfc except near coasts, where MOA Skin T a little too cold.
Using GEOS4 Skin T

Using Obs CS BTemp 11 µm

Water Ice No-Ret Clr

SZA=71
VZA=22
AZA=112

CS Obs 11 µm

GEOS4 Skin T

Terra-MODIS September 26, 2009 UTC 23

0.5

0.25

11 µm
Using GEOS4 Skin T

Using Obs CS BTemp 11 μm

Over Southern Ocean

Ice Cloud

Water Ice No-Ret Clr

CS Obs 11 μm

GEOS4 SkinT

Terra-MODIS
September 26, 2009 UTC 07
No Retrieval Percent, Terra MODIS, March 2009

With GEOS4 Skin Temp With Obs Clear Sky BTemp 11 µm

Avg No Retrieval = 15% Avg No Retrieval = 11%

• Improvement over sea ice ocean and snow covered land
Summary

- THM 1.6 μm the best picking up optically thin clouds, but saturates at Tau (ice) ~ 16-20, Tau (water) 32-40
 THM 1.24 μm better sensitivity up to 32-60 for ice clouds, 64-96 for water

- Mean optical depth
 - Ice (tau < 30):
 - SHM (1.24) ~ 8.5
 - THM (1.24) ~ 5.8
 - THM (1.6) ~ 3.4
 - Liquid water (Tau < 60):
 - 1.24 μm ~ 13.8
 - 1.6 μm ~ 6.6

- Comparison with MODIS ST:
 - Ice (tau < 30): MODIS ST mean tau = 4.9, ~1.5 larger than THM 1.6
 - Water (tau < 60): MODIS ST agrees well with THM 1.6 over Greenland, larger than THM 1.6 over Arctic Ocean

- CALIPSO Validation (for single transparent ice clouds):
 - CALIPSO ~ 1.13 (0.8)
 - THM 1.6 ~ 3.7 (11)
 - THM 1.24 ~ 6.5
 - SHM 1.24 (Ed4) ~ 13.3

- GEOS4 Skin T ~ 5.6 K too warm over sea ice ocean, and 3.3 K warm over snow covered land.
 Using observed clear sky MODIS 11 μm, reduced no retrieval from 15% to 11%.
Future Plan

• Combine THM1.6 & THM1.24
 Ice Clouds:
 \[\tau < 8 - 16 \rightarrow \text{use THM 1.6} \]
 \[\tau > 8 - 16 \rightarrow \text{use THM 1.24} \]

 Water Clouds:
 \[\tau < 32 - 40 \rightarrow \text{use } 1.6 \ \mu m \]
 \[\tau > 32 - 40 \rightarrow \text{use } 1.24 \ \mu m \]

• GEOS 4 skin temperature too warm for snow & ice covered ocean and land. What to do? Updating snow / ice covered surface temperature with 11 \(\mu m \) BTemp observations? Or hoping an improved version of GEOS skin T?