#### Patterns in the CERES Global Mean Data, Part 3.



"Instead of the traditional paradigm of properties define processes, study how processes define property" — *Graeme Stephens* 

### DATA: CERES SYN1deg Ed4A TOA

All-sky, Oct 2000 – Sep 2018 (216 months)

• TSI =  $1360.9 \pm 0.5$ 

• TOA SW in = 340.0 EBAF Ed4.0

• TOA LW = 238.6 +1.5 240.1

• TOA SW up = 97.1 + 2.0 99.1

• Net = 4.3

**Constraint I** 

TOA E in = TOA E out

**CERES Earth's Radiation Budget** 



### Loeb et al. (2018) J Clim, Table 5

|                | EBAF Ed2.8 |                 | EBAF Ed4.0 |                 |  |
|----------------|------------|-----------------|------------|-----------------|--|
|                | Unadjusted | With constraint | Unadjusted | With constraint |  |
| Incoming Solar | 339.8      | 339.8           | 340.0      | 340.0           |  |
| All-sky LW     | 238.7      | 239.6           | 238.6      | 240.1           |  |
| All-sky SW     | 97.9       | 99.6            | 97.1       | 99.1            |  |
| All-sky net    | 3.2        | 0.63            | 4.3        | 0.71            |  |
| Clear-sky LW   | 264.5      | 265.4           | 266.3      | 268.1           |  |
| Clear-sky SW   | 51.5       | 52.5            | 52.3       | 53.3            |  |
| Clear-sky net  | 23.8       | 21.9            | 21.4       | 18.6            |  |
| LW CRE         | 25.8       | 25.8            | 27.7       | 27.9            |  |
| SW CRE         | -46.4      | -47.1           | -44.8      | -45.8           |  |
| Net CRE        | -20.6      | -21.3           | -17.1      | -17.9           |  |

# A NEW Constraint in CERES SYN1deg Ed4A SFC + TOA Clear-sky Oct 2000 – Sep 2018

SFC SW down = 242.65

- SFC SW up = -28.40

= SFC SW net = 214.25

SFC LW down = 317.77

- SFC LW up = - 397.23

= SFC LW net = -79.46

SFC SW+LW net = 134.79

TOA LW = 268.15

TOA LW / 2 = 134.08

Diff = -0.71

**Constraint II** 

SFC SW+LW net

**= TOA LW / 2** 

#### What Does Constraint II Mean?

As an illustration, consider the case of radiative equilibrium with black bodies emitting  $B^*(0)$  or  $B^*(\tau_1)$  at the two boundaries. The third terms on the right-hand side of (2.144) and (2.145) are now zero and

$$F/2\pi = B(0) - B^*(0) = B^*(\tau_1) - B(\tau_1). \tag{2.146}$$

Equation (2.146) requires a discontinuity in the Planck function, implying a discontinuity of temperature, at the boundary.

The class of approximation of which (2.140) is representative is extensive and a large number of different names and terms are used to describe members of the class: the Schwarzschild-Schuster approximation, the Eddington approximations, Chandrasekhar's first

Discontinuity in the Planck function at the boundary =  $F/2\pi$ 

Goody and Yung (1989)

## Discontinuity at the ground = OLR/2, independent of the optical thickness

Several textbooks, lecture notes (Grant Petty, Visconti, Chamberlain, Pierrehumbert)

$$\sigma T_A^4 = OLR(1+\tau)/2$$

$$\sigma T_g^4 = OLR(2+\tau)/2$$



$$\sigma T_g(\tau_g)^4 - \sigma T_A(\tau_g)^4 = OLR/2$$
 independent of  $\tau_g$ 

The temperature at the bottom of the atmosphere at  $\tau^*$  is given by Equation (3.47), so that we have a discontinuity between the air temperature and that of the surface

$$T_s^4 - T(\tau^*) = T_e^4 / 2 \tag{3.49}$$

Discontinuity at the ground: SFC SW+LW net = OLR/2 Long-known theoretical requirement

## Constraint II in CERES EBAF Ed2.8 & Ed4.0

Clear-sky, CLIM YEAR

SFC SW+LW Net = 132.71

TOA LW = 265.82

(TOA LW) / 2 = 132.91

(TOA LW) / 2 - SFC Net = 0.2

SFC SW+LW Net = 130.41

TOA LW = 268.15

(TOA LW) / 2 = 134.07

(TOA LW) / 2 - SFC Net = 3.7

### My Net Balancing II

### Your (Constr I)

- SW gain = 1.7
- LW gain = 2.5

- - /O - - - L. II\

| Parameter | TOA Flux adjustment (W/m²) |  |  |
|-----------|----------------------------|--|--|
| Total SW  | 1.7                        |  |  |
| Total LW  | 2.5                        |  |  |
| Total Net | -4.2                       |  |  |

| Mine (Constr II) | SYN      | My EdMZ        | Integers   |
|------------------|----------|----------------|------------|
| SFC SW net       | = 214.25 | -0.81 = 213.44 | 8          |
| SFC LW net       | = -79.46 | -0.58 = -80.04 | <b>- 3</b> |
| SFC SW+LW net    | = 134.79 | -1.39 = 133.40 | 5          |
|                  |          |                |            |
| TOA LW           | = 268.15 | -1.35 = 266.80 | 10         |
| TOA LW/2         | = 134.08 | -0.68 = 133.40 | 5          |
| Diff             | = -0.71  | 0.0            |            |

#### Earth's Energy Imbalance of the Second Kind EEI<sub>2</sub> = TOA LW/2 – SFC SW+LW net

18 years, Oct 2000-Sep 2018



SYN1deg Ed4A 18-years

max -0.07, min -1.60, mean = -0.72 Wm<sup>-2</sup>

#### $EEI_2 = TOA LW/2 - SFC SW+LW net$

#### 12 months, Oct 2017-Sep 2018



**SYN1deg Ed4A** 12-months max 11.21, min -11.34, mean = -0.22 Wm<sup>-2</sup>

#### $EEI_2 = TOA LW/2 - SFC SW+LW net$

#### Area-weighted zonal means from N Pole to the Equator

| Degree              | SW net | LW net        | SW + LW<br>net | TOA LW | TOA<br>LW/2 | Area-weighted difference |
|---------------------|--------|---------------|----------------|--------|-------------|--------------------------|
| 80 – 90             | 6.3    | - 12.9        | <b>-</b> 6.7   | 35.6   | 17.8        | 24.5                     |
| 70 – 80             | 16.3   | - 26.6        | - 10.3         | 72.6   | 36.3        | 46.6                     |
| 60 – 70             | 54.4   | - 39.3        | 15.1           | 111.8  | 55.9        | 40.8                     |
| 50 – 60             | 112.3  | - 53.1        | 59.2           | 153.6  | 76.8        | 17.6                     |
| 40 – 50             | 159.7  | - 66.9        | 92.8           | 196.2  | 98.1        | 5.4                      |
| 30 – 40             | 204.5  | <b>–</b> 79.5 | 125.0          | 238.2  | 119.1       | - 5.9                    |
| 20 – 30             | 239.8  | -80.1         | 159.7          | 273    | 136.5       | - 23.2                   |
| 10 – 20             | 264.4  | - 71.7        | 192.7          | 289.4  | 144.7       | - 48.0                   |
| 0 – 10              | 270.6  | - 61.3        | 209.3          | 286.6  | 143.3       | - 66.0                   |
| Hemispheric<br>mean | 213.7  | - 79.1        | 134.6          | 266.6  | 133.3       | - 1.3                    |

## A THIRD constraint in CERES SYN1deg Ed4A SFC + TOA

**Clear-sky Oct 2000 – Sep 2018** 

SFC SW down = 242.65

- SFC SW up = -28.40

= SFC SW net = 214.25

+ SFC LW down = 317.77

= SFC SW+LW abs = 532.02

TOA LW = 268.15

 $2 \times (TOA LW) = 536.30$ 

Diff = 4.28

**Constraint III** 

**SFC** SW+LW abs

**= 2 TOA LW** 

Same confidence as Constraint I.

#### What Does Constraint III Mean?



S = 2A = 2F

Modified from Marshall-Plumb (2008)

### Liou (1980)

Fig. 8.20, we may write down the energy balance equations at the top of the atmosphere and the surface, respectively, in the forms

$$Q(1-\overline{r}) - \overline{\varepsilon}\sigma T_a^4 - (1-\overline{\varepsilon})\sigma T^4 = 0, \tag{8.31}$$

$$Q(1 - \overline{r} - \overline{A}) + \overline{\varepsilon}\sigma T_a^4 - \sigma T^4 = 0, \tag{8.32}$$



Fig. 8.20 Two-layer global radiative budget model.

Trivial solution to the radiative transfer problem

with 
$$\bar{A} = 0$$
 and  $\bar{\varepsilon} = 1$ ,  $\sigma T^4 = 2\sigma T_a^4$ 

#### Earth's Energy Imbalance of the Third Kind EEI<sub>3</sub> = 2TOA LW – SFC SW+LW

18 years, Oct 2000-Sep 2018



#### $EEI_3 = 2TOA LW - SFC SW+LW$

#### 12 months, Oct 2017-Sep 2018



## Constraint III in CERES EBAF Ed2.8

**Clear-sky**, CLIM YEAR

|             | SYN1deg |               | EBAF <b>Ed2.8</b> |
|-------------|---------|---------------|-------------------|
| SFC SW net  | 214.25  | + 0.09        | = 214.34          |
| SFC LW down | 317.77  | -1.49         | = 316.28          |
| SW+LW gross | 532.02  | <b>- 1.40</b> | <b>= 530.62</b>   |
|             |         |               |                   |
| TOA LW      | 268.15  | -2.55         | = 265.60          |
| 2(TOA LW)   | 536.30  | <b>- 5.10</b> | <b>= 531.20</b>   |
|             |         |               |                   |
| DIFF        | 4.28    |               | 0.58              |

## Constraint III in CERES EBAF Ed4.0

#### Clear-sky, CLIM YEAR

|             | Ed4.0                  | SYN       | My EdMZ         | N         |
|-------------|------------------------|-----------|-----------------|-----------|
| SFC SW net  | = 213.99 + 0.26        | <= 214.25 | -0.81 = 213.44  | 8         |
| SFC LW down | = 314.02 + 3.75        | <= 317.77 | + 2.39 = 320.16 | 12        |
| SW+LW abs   | <b>= 528.01 + 4.01</b> | <= 532.02 | + 1.58 = 533.60 | <b>20</b> |
|             |                        |           |                 |           |
| TOA LW      | = 268.04 + 0.11        | <= 268.15 | -1.35 = 266.80  | 10        |
| 2(TOA LW)   | <b>= 536.08 + 0.22</b> | <= 536.30 | -2.70 = 533.60  | <b>20</b> |
|             |                        |           |                 |           |
| DIFF        | = 8.1                  | 4.28      | 0.0             |           |

## The Three Musketeers: Truth, Law and Order The One, The Half and The Double

ASR = OLR SFC Net = OLR/2

SFC Gross = 20LR

**CERES Earth's Radiation Budget** 



Universal necessity



Theoretical requirement



Simplest geometry

One for all, all for one

### My Net Balancing I

Total Solar Irradiance =  $1360.68 \text{ Wm}^{-2} = 51 \text{ units}$ 

1 unit =  $TSI / 51 = 26.68 \text{ Wm}^{-2}$ 

Reflected all-sky, cross-section disk = 15 units

Absorbed all-sky, cross-section disk = **36** units

Reflected SW clear-sky, disk = 8 units

Absorbed SW clear-sky, disk = 43 units

Incoming Solar Radiation, sphere = 51 / 4 = 340.17

Reflected SW all-sky, sphere = 15 / 4 units = 100.05

Absorbed SW all-sky, sphere = 36 / 4 = 9 units = 240.12

Emitted LW all-sky, sphere = 36 / 4 = 9 units = 240.12

Reflected SW clear-sky, sphere = 8/4 = 2 units = 53.36

Absorbed SW clear-sky, sphere = 43 / 4 units = 286.81

Emitted LW clear-sky, sphere = 40 / 4 = 10 units = 266.80

TOA net CRE = -3/4 units = -20.01

### My Net Balancing I-II-III & CRE

| 1 UNIT = 26.68 Wm <sup>-2</sup> Total Solar Irradiance TOA SW up all TOA LW up all TOA SW up clr TOA LW up clr |           | My - 0.22 + 2.73 + 1.49 + 1.98 - 1.35 | N × UNIT<br>= 1360.68<br>= 100.05<br>= 240.12<br>= 53.36<br>= 266.80               | N<br>51<br>15 / 4<br>36 / 4<br>8 / 4<br>40 / 4 |
|----------------------------------------------------------------------------------------------------------------|-----------|---------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------|
| SFC SW+LW net clr                                                                                              | = 134.79  | - 1.39                                |                                                                                    | 5                                              |
| (TOA LW)/2 clr                                                                                                 | = 134.08  | - 0.68                                |                                                                                    | 5                                              |
| SFC SW net clr                                                                                                 | = 214.25  | - 0.81                                | <ul> <li>= 213.44</li> <li>= 320.16</li> <li>= 533.60</li> <li>= 533.60</li> </ul> | 8                                              |
| SFC LW down clr                                                                                                | = 317.77  | + 2.39                                |                                                                                    | 12                                             |
| SFC SW+LW abs clr                                                                                              | = 532.02  | <b>+ 1.58</b>                         |                                                                                    | 20                                             |
| 2 × (TOA LW) clr                                                                                               | = 536.30  | - <b>2.70</b>                         |                                                                                    | 20                                             |
| LW CRE SFC, TOA                                                                                                | = 29.52   | - 2.84                                | = 26.68                                                                            | 1                                              |
| SW CRE SFC                                                                                                     | = - 52.60 | - 0.76                                | = - 53.36                                                                          | 2                                              |
| SW CRE TOA                                                                                                     | = - 45.93 | - 0.76                                | = - 46.69                                                                          | 7 / 4                                          |

#### **Bonus: The Greenhouse Effect**

G = SFC LW up - TOA LW

| SYN1deg             | SYN    | My            | EdMZ   | N  |
|---------------------|--------|---------------|--------|----|
| SFC LW up all-sky   | 397.96 | + 2.24        | 400.20 | 15 |
| TOA LW all-sky      | 238.63 | + 1.49        | 240.12 | 9  |
| G all-sky           | 159.33 | + 0.75        | 160.08 | 6  |
|                     |        |               |        |    |
| SFC LW up clear-sky | 397.23 | + 2.97        | 400.20 | 15 |
| TOA LW clear-sky    | 268.15 | <b>- 1.35</b> | 266.80 | 10 |
| G clear-sky         | 129.08 | + 4.32        | 133.40 | 5  |

## Understanding how the Sun's energy drives Earth's climate system

