Patterns in the CERES Global Mean Data, Part 3.

"Instead of the traditional paradigm of properties define processes, study how processes define property" — *Graeme Stephens*

DATA: CERES SYN1deg Ed4A TOAAll-sky, Oct 2000 – Sep 2018 (216 months)

- TSI $= 1360.9 \pm 0.5$
- •TOA SW in ⁼**340.0 EBAF Ed4.0**
- •TOA LW = **238.6 +1.5 240.1**
- •TOA SW up ⁼**97.1 +2.0 99.1**
- Net $= 4.3$

Constraint I

TOA E in = TOA E out

Energy In Energy Out (LW+SW)

Loeb et al. (2018) J Clim, Table ⁵

A NEW Constraint in CERES SYN1deg Ed4A SFC ⁺ TOA Clear-sky Oct 2000 – Sep ²⁰¹⁸

- SFC SW down = **242.65**
- – $SFC SW up = -28.40$
- =SFC SW net = 214.25

What Does Constraint II Mean?

As an illustration, consider the case of radiative equilibrium with black bodies emitting $B^*(0)$ or $B^*(\tau_1)$ at the two boundaries. The third terms on the right-hand side of (2.144) and (2.145) are now zero and

$$
F/2\pi = B(0) - B^*(0) = B^*(\tau_1) - B(\tau_1). \tag{2.146}
$$

Equation (2.146) requires a discontinuity in the Planck function, implying a discontinuity of temperature, at the boundary.

The class of approximation of which (2.140) is representative is extensive and a large number of different names and terms are used to describe members of the class: the Schwarzschild-Schuster approximation, the Eddington approximations, Chandrasekhar's first

Discontinuity in the Planck function at the boundary = $F/2\pi$

Goody and Yung (1989)

Discontinuity at the ground = OLR/2, independent of the optical thickness

The temperature at the bottom of the atmosphere at τ^* is given by Equation (3.47), so that we have a discontinuity between the air temperature and that of the surface

$$
T_s^4 - T(\tau^*) = T_e^4/2 \tag{3.49}
$$

Discontinuity at the ground: SFC SW+LW net = OLR/2Long-known theoretical requirement

Constraint II in CERES EBAF Ed2.8 & Ed4.0 Clear-sky, CLIM YEAR

My Net Balancing II

Your (Constr I)

- SW gain = 1.7
- LW gain $= 2.5$ •

Earth's Energy Imbalance of the Second Kind EEI2 = TOA LW/2 – SFC SW+LW net 18 years, Oct 2000-Sep 2018

SYN1deg Ed4A 18-years max -0.07 , min -1.60 , mean $=$ $- 0.72$ Wm⁻²

EEI2 = TOA LW/2 – SFC SW+LW net

12 months, Oct 2017-Sep 2018

SYN1deg Ed4A 12-months max 11.21, min -11.34 , mean $=$ $- 0.22$ Wm⁻²

$EEI₂ = TOA LW/2 - SFC SW+LW net$

Area-weighted zonal means from N Pole to the Equator

A THIRD constraint in CERES SYN1deg Ed4A SFC ⁺ TOA Clear-sky Oct 2000 – Sep ²⁰¹⁸

4.28

SFC SW down ⁼**242.65**

- – $SFC SW up = -28.40$
- =SFC SW net = 214.25
- ⁺ SFC LW down = **317.77**
- **= SFC SW+LW abs = 532.02**

TOA LWW = **268.15**
2011 = 526.20

2 × (TOA LW) = 536.30

Diff ⁼

SFC SW+LW abs = 2 TOA LW

> Same confidence asConstraint I.

Constraint III

What Does Constraint III Mean?

S = 2A = 2F

Modified from Marshall-Plumb (2008)

Liou (1980)

atmosphere and the surface, respectively, in the forms

$$
Q(1 - \overline{r}) - \overline{\epsilon}\sigma T_a^4 - (1 - \overline{\epsilon})\sigma T^4 = 0, \qquad (8.31)
$$

$$
Q(1 - \overline{r} - \overline{A}) + \overline{\epsilon}\sigma T_a^4 - \sigma T^4 = 0, \qquad (8.32)
$$

Fig. 8.20 Two-layer global radiative budget model.

Trivial solution to the radiative transfer problemwith $\overline{A} = 0$ and $\overline{\varepsilon} = 1$, $\sigma T^4 = 2\sigma T_a^4$

Earth's Energy Imbalance of the Third Kind EEI3 = 2TOA LW – SFC SW+LW

18 years, Oct 2000-Sep 2018

EEI3 = 2TOA LW – SFC SW+LW

12 months, Oct 2017-Sep 2018

Constraint III in CERES EBAF Ed4.0 **Clear-sky, CLIM YEAR**

One for all, all for one

My Net BalancingI

Total Solar Irradiance=**1360.68** Wm⁻² = 51 units

1 unit = TSI / $51 = 26.68$ Wm⁻²

Reflected all-sky, cross-section disk = 15 units Absorbed all-sky, cross-section disk= 36 units Reflected SW clear-sky, disk = = Absorbed SW clear-sky, disk = 43 units
Incoming Color Pediction criters Incoming Solar Radiation, sphere $=51/4$ **Reflected SW all-sky, sphere ⁼Absorbed SW all-sky, sphere ⁼**36**Emitted LW all-sky, sphere ⁼**36**Reflected SW clear-sky, sphere ⁼ Absorbed SW clear-sky, sphere ⁼**⁴³ **/ 4 units = 286.81 Emitted LW clear-sky, sphere ⁼**⁴⁰ **/ 4 =** ¹⁰ **units = 266.80 TOA net CRE**

- 8 units $= 340.17$ ¹⁵ **/ 4 units = 100.05**
- **/ 4 =** 9 **units = 240.12 / 4 =** 9 **units = 240.12**
- 8 **/ 4 =** 2 **units = 53.36**
-
- - 3 **/ 4 units = –20.01**
-
-
-
-
-
-
-

My Net Balancing I-II-III & CRE

Bonus: The Greenhouse Effect $G = \mathsf{SFC}\;\mathsf{LW}\; \mathsf{up} - \mathsf{TOA}\;\mathsf{LW}$

G clear-sky **129.08 + 4.32 133.40** 5

Understanding how the Sun's energy
drives Earth's climate system

240.12

1360.68