Low-Level Cloud Feedback Estimated from CERES Co-Variability with Meteorology

Joel Norris and Ryan Scott (SIO/UCSD)
Tyler Thorsen (NASA LaRC)
Spring CERES Science Team Meeting
May 8, 2019
Outline

• Ten-year retrospective
• Prior work
• Challenges and solutions
• Cloud response to meteorology
• Radiative effects method
• Radiative response to SST
• Regional radiative response
• Estimation of climate feedback
• Discussion and summary
Outline

- Ten-year retrospective – *how far have we come? How far has Joel come?*
 - Prior work
 - Challenges and solutions
 - Cloud response to meteorology
 - Radiative effects method
 - Radiative response to SST
 - Regional radiative response
 - Estimation of climate feedback
 - Discussion and summary
Clouds in the Climate System:

Why is this such a difficult problem, and where do we go from here?

Joel Norris
Scripps Institution of Oceanography

CERES Science Team Meeting

April 29, 2009
Why is this a difficult problem?

• We have no stable system to monitor global cloudiness and radiation on multidecadal time scales

• Cloud and radiation measurements are insufficiently integrated with associated meteorological processes

• Wrong priorities in climate modeling efforts
Where do we go from here? (1)

• Develop a stable observational system to monitor global cloudiness and radiation on decadal time scales

• Correct (to the extent possible) the historical cloud and radiation record
 – this includes reprocessing data long after a mission has ended
 – integrate satellite and non-satellite datasets (surface observations, ocean heat content, reanalysis meteorology)
Where do we go from here? (2)

• Integrate meteorological conditions with cloud and radiation measurements
 – detailed information of cloud properties is not sufficient to characterize processes and feedbacks
 – *daily rather than monthly data is fundamental*

• Understand that the instantaneous cloud and radiation state results from a history of meteorological processes
 – coincident cloud and meteorological correlations may not show true relationships
Where do we go from here? (3)

• Assimilate cloud and radiation measurements into global models for best integration
 – *this is a very difficult task due to model cloud biases*

• Focus on essential cloud, convection, and turbulence parameterization development
 – *it doesn’t make sense to add aerosol indirect effects when basic cloud processes are not credible*
Cloud Feedbacks in Recent Climate Models

- Cloud feedbacks are still the greatest source of disagreement among models about climate sensitivity.
Cloud Feedbacks in Recent Climate Models

• Cloud feedbacks are still greatest source of disagreement among models about climate sensitivity

• SW cloud feedback causes the most inter-model disagreement

Plot from Ceppi et al. (2017)
Cloud Feedbacks in Recent Climate Models

- Cloud feedbacks are still the greatest source of disagreement among models about climate sensitivity.
- SW cloud feedback causes the most inter-model disagreement.
- SW cloud feedback primarily arises from low-level clouds.
Cloud Feedbacks in Recent Climate Models

- Cloud feedbacks are still the greatest source of disagreement among models about climate sensitivity.
- SW cloud feedback causes the most inter-model disagreement.
- SW cloud feedback primarily arises from low-level clouds.
- Climate models inconsistently and incorrectly simulate low-level cloudiness.

Plot from Ceppi et al. (2017)
Estimating Low-Level Cloud Feedback

Challenge:

- Climate models *disagree* about low-level cloud response to changes in meteorological “controlling factors”
Estimating Low-Level Cloud Feedback

Challenge:

• Climate models disagree about low-level cloud response to changes in meteorological “controlling factors”

But:

• Climate models agree about how meteorological “controlling factors” will change due to global warming
Estimating Low-Level Cloud Feedback

Challenge:
- Climate models *disagree* about low-level cloud response to changes in meteorological “controlling factors”

But:
- Climate models *agree* about how meteorological “controlling factors” will change due to global warming

Solution:
- Multiply observed cloud response to model-projected change in controlling factors – *Myers and Norris (2016)*
Outline

• Ten-year retrospective – *how far have we come? How far has Joel come?*
• Prior work – conceptual model and *Myers and Norris (2016)*
 • Challenges and solutions
 • Cloud response to meteorology
 • Radiative effects method
 • Radiative response to SST
 • Regional radiative response
 • Estimation of climate feedback
• Discussion and summary
Conceptual Model

• Low-level clouds occur in the marine boundary layer

• Clouds respond on time scales of 0-48 hours to changes in large-scale meteorological conditions outside the boundary layer

• Clouds radiative forcing of the atmosphere and ocean outside the boundary layer occurs at time scales much longer than 2 days
Conceptual Model

• When averaged over more than a few days, low-level clouds are in equilibrium with large-scale meteorological conditions

• Co-variability represents cloud response to changing large-scale meteorological conditions

• Large-scale meteorological conditions can be represented by several “cloud-controlling factors”
Conceptual Model

• Cloud response to large-scale meteorology can be empirically determined by multilinear regression on cloud controlling factors

• Multilinear regression provides “partial derivatives” to distinguish specific and independent influence of each controlling factor on cloud

• Important since controlling factors co-vary differently with each other on interannual and climate change time scales

Cloud controlling factors

Multilinear regression

Cloud response
Myers and Norris (2016) Method

Leading order Taylor expansion →

\[\Delta SW = \frac{\partial SW}{\partial SST} \Delta SST + \frac{\partial SW}{\partial EIS} \Delta EIS + \frac{\partial SW}{\partial RH_{700}} \Delta RH_{700} \]

\[+ \frac{\partial SW}{\partial SST_{adv}} \Delta SST_{adv} + \frac{\partial SW}{\partial \omega_{700}} \Delta \omega_{700} \]

- SW cloud response coefficients (red) obtained from multilinear regression on satellite and reanalysis data
- Changes in controlling factors caused by global warming (blue) obtained from climate model projections for 4xCO2 warming

Definitions:
- \(SW \) = SW cloud radiative effect
- \(SST \) = sea surface temperature
- \(EIS \) = estimated inversion strength
- \(RH_{700} \) = 700 hPa relative humidity
- \(\omega_{700} \) = 700 hPa pressure vertical velocity
- \(SST_{adv} = -V \cdot \nabla SST \) = advection over the SST gradient
Myers and Norris (2016) Analysis Domain

Low-latitude ocean grid boxes where monthly mean subsidence always occurs

- Minimizes confounding effects of high clouds
- But more weighting on stratocumulus and less weighting on trade cumulus
- Neglects midlatitude low-level cloud

hatching indicates domain of analysis
SW Cloud Response to Controlling Factors

- Calculated via multilinear regression applied to monthly anomalies
- Climate models exhibit great disagreement with observations and each other

Plot from Myers and Norris (2016)

Black = coefficients from observed monthly anomalies
Color = coefficients from climate model monthly anomalies
Units: W m$^{-2}$ per interannual standard deviation of meteorological parameter
Changes in Controlling Factors for 4xCO2

- Climate models agree about changes in meteorological controlling factors.

Plot from Myers and Norris (2016)
- Black = Ensemble Mean
- Color = Models

change for 1 K global warming reported in units of interannual standard deviation.
Estimated SW Cloud Feedback

• Actual SW cloud feedback produced by climate models for 4xCO2 spans a large range of positive and negative values

Plot from Myers and Norris (2016)

Black = Ensemble Mean

Color = Models
Estimated SW Cloud Feedback

- Actual SW cloud feedback produced by climate models for 4xCO2 spans a large range of positive and negative values.

\[\Delta SW = \frac{\partial SW}{\partial SST} \Delta SST + \frac{\partial SW}{\partial EIS} \Delta EIS + \frac{\partial SW}{\partial RH_{700}} \Delta RH_{700} \]
\[+ \frac{\partial SW}{\partial SST_{adv}} \Delta SST_{adv} + \frac{\partial SW}{\partial \omega_{700}} \Delta \omega_{700} \]

- Estimated SW cloud feedback has much smaller range of values.
- About +0.4 W m\(^{-2}\) K\(^{-1}\) for low-level clouds over ocean
 (+0.25 W m\(^{-2}\) K\(^{-1}\) scaled globally)
Shortcomings of Myers and Norris (2016)

- Examined limited area of ocean
- Assumed no mid- and high-level clouds were present
- Attributed characteristics of (mostly) subtropical stratocumulus to all low-level clouds over ocean

hatching indicates domain of analysis
Shortcomings of Myers and Norris (2016)

• Examined limited area of ocean
• Assumed no mid- and high-level clouds were present
• Attributed characteristics of (mostly) subtropical stratocumulus to all low-level clouds over ocean

Need global ocean analysis that addresses mid- and high-level cloud presence
Outline

• Ten-year retrospective – how far have we come? How far has Joel come?
• Prior work – conceptual model and Myers and Norris (2016)
• Challenges and solutions – overcoming the confounding impact of upper-level cloud
• Cloud response to meteorology
• Radiative effects method
• Radiative response to SST
• Regional radiative response
• Estimation of climate feedback
• Discussion and summary
Challenges to Applying Method Globally

Challenge

Need to distinguish radiative effects of low-level clouds from radiative effects of higher clouds
Challenges to Applying Method Globally

Challenge
Need to distinguish radiative effects of low-level clouds from radiative effects of higher clouds

Solution
CERES Partial Radiative Perturbation (Thorsen et al. 2018)
Challenges to Applying Method Globally

Challenge
Need to distinguish radiative effects of low-level clouds from radiative effects of higher clouds

Solution
CERES Partial Radiative Perturbation (Thorsen et al. 2018)

Challenge
Need to distinguish actual change in low-level cloud fraction from satellite-viewed change due to obscuration by higher clouds
Challenges to Applying Method Globally

Challenge

Need to distinguish radiative effects of low-level clouds from radiative effects of higher clouds

Solution

CERES Partial Radiative Perturbation (Thorsen et al. 2018)

Challenge

Need to distinguish actual change in low-level cloud fraction from satellite-viewed change due to obscuration by higher clouds
Challenges to Applying Method Globally

Challenge
Need to distinguish radiative effects of low-level clouds from radiative effects of higher clouds

Solution
CERES Partial Radiative Perturbation (Thorsen et al. 2018)

Challenge
Need to distinguish actual change in low-level cloud fraction from satellite-viewed change due to obscuration by higher clouds

Solution
Two new approaches
Approach 1: Adjust for Obscuring Upper Cloud

$L =$ fractional area of grid box covered by low-level cloud viewed by satellite
$U =$ fractional area of grid box covered by upper-level (mid+high) cloud
Approach 1: Adjust for Obscuring Upper Cloud

$L = \frac{\text{fractional area of grid box covered by low-level cloud}}{\text{viewed by satellite}}$

$U = \frac{\text{fractional area of grid box covered by upper-level (mid+high) cloud}}{\text{viewed by satellite}}$

$L_n = \frac{\text{fraction of area not obscured by upper-level cloud that is covered by low-level cloud}}{\text{viewed by satellite}}$

$L_n = \frac{L}{1 - U}$
Approach 1: Adjust for Obscuring Upper Cloud

$L = \text{fractional area of grid box covered by low-level cloud viewed by satellite}$

$U = \text{fractional area of grid box covered by upper-level (mid+high) cloud}$

$L_n = \text{fraction of area not obscured by upper-level cloud that is covered by low-level cloud}$

$L_n = \frac{L}{1 - U}$

Climatology (overbar) and anomaly (prime) \textit{ignore 2nd-order terms (small)}

$\overline{L_n} = \frac{\overline{L}}{1 - \overline{U}}$

$L'_n = \frac{L' + U'\overline{L_n}}{1 - \overline{U}}$
Approach 1: Adjust for Obscuring Upper Cloud

$L = \text{fractional area of grid box covered by low-level cloud viewed by satellite}$

$U = \text{fractional area of grid box covered by upper-level (mid+high) cloud}$

$L_n = \text{fraction of area not obscured by upper-level cloud that is covered by low-level cloud}$

$L_n = \frac{L}{1 - U}$

Climatology (overbar) and anomaly (prime)

$\overline{L}_n = \frac{\overline{L}}{1 - \overline{U}}$

$L'_n = \frac{L' + U'\overline{L}_n}{1 - \overline{U}}$

fraction of upper cloud anomaly that overlaps low cloud – add this to low cloud anomaly reported by satellite
Approach 1: Adjust for Obscuring Upper Cloud
Approach 1: Adjust for Obscuring Upper Cloud
Approach 2: Use Upper Cloud as a Predictor

• Let U be a predictor of L along with the meteorological parameters in the calculation of multilinear regression coefficients.

\[
\Delta L = \frac{\partial L}{\partial SST} \Delta SST + \frac{\partial L}{\partial EIS} \Delta EIS + \frac{\partial L}{\partial RH_{700}} \Delta RH_{700} \\
+ \frac{\partial L}{\partial SST_{adv}} \Delta SST_{adv} + \frac{\partial L}{\partial \omega_{700}} \Delta \omega_{700} + \frac{\partial L}{\partial W_s} \Delta W_s \\
+ \frac{\partial L}{\partial U} \Delta U
\]
Approach 2: Use Upper Cloud as a Predictor

- Let U be a predictor of L along with the meteorological parameters in the calculation of multilinear regression coefficients.

- Meteorological coefficients will then represent partial derivative response with upper cloud obscuration held constant.

\[
\Delta L = \frac{\partial L}{\partial SST} \Delta SST + \frac{\partial L}{\partial EIS} \Delta EIS + \frac{\partial L}{\partial RH_{700}} \Delta RH_{700} \\
+ \frac{\partial L}{\partial SST_{adv}} \Delta SST_{adv} + \frac{\partial L}{\partial \omega_{700}} \Delta \omega_{700} + \frac{\partial L}{\partial W_s} \Delta W_s \\
+ \frac{\partial L}{\partial U} \Delta U
\]
Approach 2: Use Upper Cloud as a Predictor

- Let U be a predictor of L along with the meteorological parameters in the calculation of multilinear regression coefficients.

- Meteorological coefficients will then represent partial derivative response with upper cloud obscuration held constant.

- *Do not include U as a predictor of low-level cloud change for 4xCO2 warming.*

\[
\Delta L = \frac{\partial L}{\partial SST} \Delta SST + \frac{\partial L}{\partial EIS} \Delta EIS + \frac{\partial L}{\partial RH_{700}} \Delta RH_{700} \\
+ \frac{\partial L}{\partial SST_{adv}} \Delta SST_{adv} + \frac{\partial L}{\partial \omega_{700}} \Delta \omega_{700} + \frac{\partial L}{\partial W_s} \Delta W_s \\
+ \frac{\partial L}{\partial U} \Delta U
\]
Multilinear Regression Coefficients

Approach 1

- Non-obscured low-level cloud fraction anomalies L^\prime_n
- Effects of upper-level cloud removed prior to regression

\[
\Delta L_n = \frac{\partial L_n}{\partial SST} \Delta SST + \frac{\partial L_n}{\partial EIS} \Delta EIS + \frac{\partial L_n}{\partial RH_{700}} \Delta RH_{700} \\
+ \frac{\partial L_n}{\partial SST_{adv}} \Delta SST_{adv} + \frac{\partial L_n}{\partial \omega_{700}} \Delta \omega_{700} + \frac{\partial L_n}{\partial W_s} \Delta W_s
\]
Multilinear Regression Coefficients

Approach 1
- Non-obscured low-level cloud fraction anomalies L'_n
- Effects of upper-level cloud removed prior to regression

$\Delta L_n = \frac{\partial L_n}{\partial SST} \Delta SST + \frac{\partial L_n}{\partial EIS} \Delta EIS + \frac{\partial L_n}{\partial RH_{700}} \Delta RH_{700} + \frac{\partial L_n}{\partial SSTadv} \Delta SSTadv + \frac{\partial L_n}{\partial \omega_{700}} \Delta \omega_{700} + \frac{\partial L_n}{\partial W_s} \Delta W_s$

Approach 2
- Satellite-viewed low-level cloud fraction anomalies L'
- Effects of upper-level cloud removed using upper cloud as a predictor in regression

$\Delta L = \frac{\partial L}{\partial SST} \Delta SST + \frac{\partial L}{\partial EIS} \Delta EIS + \frac{\partial L}{\partial RH_{700}} \Delta RH_{700} + \frac{\partial L}{\partial SSTadv} \Delta SSTadv + \frac{\partial L}{\partial \omega_{700}} \Delta \omega_{700} + \frac{\partial L}{\partial W_s} \Delta W_s + \frac{\partial L}{\partial U} \Delta U$
Multilinear Regression Coefficients

- Will have greater confidence if the two approaches yield similar coefficients

\[\Delta L_n = \frac{\partial L_n}{\partial SST} \Delta SST + \frac{\partial L_n}{\partial EIS} \Delta EIS + \frac{\partial L_n}{\partial RH_{700}} \Delta RH_{700} + \frac{\partial L_n}{\partial SST_{adv}} \Delta SST_{adv} + \frac{\partial L_n}{\partial \omega_{700}} \Delta \omega_{700} + \frac{\partial L_n}{\partial W_s} \Delta W_s \]

\[\Delta L = \frac{\partial L}{\partial SST} \Delta SST + \frac{\partial L}{\partial EIS} \Delta EIS + \frac{\partial L}{\partial RH_{700}} \Delta RH_{700} + \frac{\partial L}{\partial SST_{adv}} \Delta SST_{adv} + \frac{\partial L}{\partial \omega_{700}} \Delta \omega_{700} + \frac{\partial L}{\partial W_s} \Delta W_s + \frac{\partial L}{\partial U} \Delta U \]
Multilinear Regression Coefficients

• Will have greater confidence if the two approaches yield similar coefficients

• L'_n coefficients must be multiplied by the area fraction not obscured by upper cloud to correspond to satellite view

\[
\Delta L_n = \frac{\partial L_n}{\partial SST} \Delta SST + \frac{\partial L_n}{\partial EIS} \Delta EIS + \frac{\partial L_n}{\partial RH_{700}} \Delta RH_{700}
\]

\[
+ \frac{\partial L_n}{\partial SST_{adv}} \Delta SST_{adv} + \frac{\partial L_n}{\partial \omega_{700}} \Delta \omega_{700} + \frac{\partial L_n}{\partial W_s} \Delta W_s
\]

\[
\Delta L = \frac{\partial L}{\partial SST} \Delta SST + \frac{\partial L}{\partial EIS} \Delta EIS + \frac{\partial L}{\partial RH_{700}} \Delta RH_{700}
\]

\[
+ \frac{\partial L}{\partial SST_{adv}} \Delta SST_{adv} + \frac{\partial L}{\partial \omega_{700}} \Delta \omega_{700} + \frac{\partial L}{\partial W_s} \Delta W_s
\]

\[
+ \frac{\partial L}{\partial U} \Delta U
\]
Multilinear Regression Coefficients

- Will also have greater confidence if observed coefficients are consistent with expected physical processes

\[
\Delta L_n = \frac{\partial L_n}{\partial SST} \Delta SST + \frac{\partial L_n}{\partial EIS} \Delta EIS + \frac{\partial L_n}{\partial RH_{700}} \Delta RH_{700} \\
+ \frac{\partial L_n}{\partial SST adv} \Delta SST adv + \frac{\partial L_n}{\partial \omega_{700}} \Delta \omega_{700} + \frac{\partial L_n}{\partial W_s} \Delta W_s
\]

\[
\Delta L = \frac{\partial L}{\partial SST} \Delta SST + \frac{\partial L}{\partial EIS} \Delta EIS + \frac{\partial L}{\partial RH_{700}} \Delta RH_{700} \\
+ \frac{\partial L}{\partial SST adv} \Delta SST adv + \frac{\partial L}{\partial \omega_{700}} \Delta \omega_{700} + \frac{\partial L}{\partial W_s} \Delta W_s \\
+ \frac{\partial L}{\partial U} \Delta U
\]
Multilinear Regression Coefficients

- Will also have greater confidence if observed coefficients are consistent with expected physical processes.
- Surface wind speed is added as a predictor to distinguish effects of wind speed from SST gradient in SSTadv.

\[
\Delta L_n = \frac{\partial L_n}{\partial \text{SST}} \Delta \text{SST} + \frac{\partial L_n}{\partial \text{EIS}} \Delta \text{EIS} + \frac{\partial L_n}{\partial \text{RH}_{700}} \Delta \text{RH}_{700}
\]

\[
+ \frac{\partial L_n}{\partial \text{SST}_{adv}} \Delta \text{SST}_{adv} + \frac{\partial L_n}{\partial \omega_{700}} \Delta \omega_{700} + \frac{\partial L_n}{\partial W_s} \Delta W_s
\]

\[
\Delta L = \frac{\partial L}{\partial \text{SST}} \Delta \text{SST} + \frac{\partial L}{\partial \text{EIS}} \Delta \text{EIS} + \frac{\partial L}{\partial \text{RH}_{700}} \Delta \text{RH}_{700}
\]

\[
+ \frac{\partial L}{\partial \text{SST}_{adv}} \Delta \text{SST}_{adv} + \frac{\partial L}{\partial \omega_{700}} \Delta \omega_{700} + \frac{\partial L}{\partial W_s} \Delta W_s
\]

\[
+ \frac{\partial L}{\partial U} \Delta U
\]
Outline

• Ten-year retrospective – *how far have we come? How far has Joel come?*
• Prior work – conceptual model and *Myers and Norris (2016)*
• Challenges and solutions – *overcoming the confounding impact of upper-level cloud*
• **Cloud response to meteorology – physical processes and observed response**
 • Radiative effects method
 • Radiative response to SST
 • Regional radiative response
 • Estimation of climate feedback
 • Discussion and summary
Meteorological Controlling Factors

- Estimated Inversion Strength (EIS)
Expected Low Cloud Response to EIS

Entrainment of air through the capping inversion dries and warms the boundary layer
Expected Low Cloud Response to EIS

Entrainment of air through the capping inversion dries and warms the boundary layer.

If the inversion strengthens

- Entrainment decreases
- Low-level cloudiness increases
- Less SW is absorbed by climate system
Observed Low Cloud Response to EIS

- Increased low-level cloudiness for stronger EIS almost everywhere
- Slightly larger response in eastern subtropical ocean regions
Observed Low Cloud Response to EIS

- Increased low-level cloudiness for stronger EIS almost everywhere
- Slightly larger response in eastern subtropical ocean regions
- Weak negative or zero response in deep convective regions where EIS is weakest and capping inversion is absent
Meteorological Controlling Factors

- Estimated Inversion Strength (EIS)
- Advection over SST gradient (SSTadv)
Expected Low Cloud Response to SSTadv

Near-surface stratification varies according to the advection of the boundary layer over a SST gradient
Expected Low Cloud Response to SSTadv

Near-surface stratification varies according to the advection of the boundary layer over a SST gradient.

If cold advection strengthens
- Cooler air over warmer water
- Near-surface instability increases
- More upward mixing of moisture
- Low-level cloudiness increases
- Less SW is absorbed by climate system
Expected Low Cloud Response to SSTadv

Near-surface stratification varies according to the advection of the boundary layer over a SST gradient.

If warm advection strengthens:
- Warmer air over cooler water
- Near-surface stability increases
- Less upward mixing of moisture
- Low-level cloudiness decreases
- More SW is absorbed by climate system
Observed Low Cloud Response to SSTadv

- Increased low-level cloudiness for stronger (negative) cold advection almost everywhere
- Weak positive or zero response at lowest latitudes
Observed Low Cloud Response to SSTadv

- Increased low-level cloudiness for stronger (negative) cold advection almost everywhere
- Weak positive or zero response at lowest latitudes
- Larger response along subtropical-midlatitude SSTadv transition zone
Meteorological Controlling Factors

- Estimated Inversion Strength (EIS)
- Advection over SST gradient (SSTadv)
- Surface wind speed (W_s)
Expected Low Cloud Response to W_s

Surface moisture flux increases with wind speed
Expected Low Cloud Response to W_s

Surface moisture flux increases with wind speed

If surface wind speed strengthens
- More upward mixing of moisture
- Low-level cloudiness increases
- Less SW is absorbed by climate system
Observed Low Cloud Response to W_S

- Increased low-level cloudiness for stronger surface wind at low latitudes
Observed Low Cloud Response to W_s

- Increased low-level cloudiness for stronger surface wind at low latitudes
- Weak negative or zero response at middle latitudes (warm advection, cold SST)
Observed Low Cloud Response to W_s

- Increased low-level cloudiness for stronger surface wind at low latitudes
- Weak negative or zero response at middle latitudes (warm advection, cold SST)
- Weak negative or zero response in deep convective regions (weak wind)
Meteorological Controlling Factors

• Estimated Inversion Strength (EIS)
• Advection over SST gradient (SSTadv)
• Surface wind speed (W_s)
• Vertical velocity at 700 hPa (ω_{700})
Expected Low Cloud Response to ω_{700}

Low-level cloud is capped by a subsidence inversion
Expected Low Cloud Response to ω_{700}

Low-level cloud is capped by a subsidence inversion

If subsidence weakens

- Low-level cloud top rises
- Low-level cloudiness increases
- Less SW is absorbed by climate system
Observed Low Cloud Response to ω_{700}

- Slight tendency for increased low-level cloudiness for weaker subsidence in subsidence regime
Observed Low Cloud Response to ω_{700}

- Slight tendency for increased low-level cloudiness for weaker subsidence in subsidence regime
- If obscuring effects of upper clouds are not taken into account, then satellite-viewed low-level cloud is reduced when ascent occurs

Upper level cloud not a predictor
Meteorological Controlling Factors

- Estimated Inversion Strength (EIS)
- Advection over SST gradient (SSTadv)
- Surface wind speed (W_s)
- Vertical velocity at 700 hPa (ω_{700})
- Relative humidity at 700 hPa (RH_{700})
Expected Low Cloud Response to RH$_{700}$

Entrainment of air from the free troposphere dries the boundary layer
Expected Low Cloud Response to RH$_{700}$

Entrainment of air from the free troposphere dries the boundary layer

If the troposphere humidifies

- Entrainment drying decreases
- Low-level cloudiness increases
- Less SW is absorbed by climate system

(also more LW emitted downward toward cloud, but appears to be a secondary effect)
Observed Low Cloud Response to RH$_{700}$

- Increased low-level cloudiness for greater humidity above boundary layer at low-latitudes (warmer SST)
Observed Low Cloud Response to RH$_{700}$

- Increased low-level cloudiness for greater humidity above boundary layer at low-latitudes (warmer SST)
- If obscuring effects of upper clouds are not taken into account, then satellite-viewed low-level cloud is reduced when free-tropospheric humidity is greater

 Upper level cloud not a predictor
Meteorological Controlling Factors

- Estimated Inversion Strength (EIS)
- Advection over SST gradient (SSTadv)
- Surface wind speed (W_s)
- Vertical velocity at 700 hPa (ω_{700})
- Relative humidity at 700 hPa (RH_{700})
- Sea surface temperature (SST)
Expected Low Cloud Response to SST

Turbulence in the boundary layer drives the entrainment that dries and warms the boundary layer.
Expected Low Cloud Response to SST

Turbulence in the boundary layer drives the entrainment that dries and warms the boundary layer.

If SST increases

- Cloud latent heating increases
- Turbulence increases
- Entrainment increases
- Low-level cloudiness decreases
- More SW is absorbed by climate system
Expected Low Cloud Response to SST

Turbulence in the boundary layer drives the entrainment that dries and warms the boundary layer.

If SST increases
- Cloud latent heating increases
- Turbulence increases
- Entrainment increases
- Low-level cloudiness decreases
- More SW is absorbed by climate system

Is this true beyond the subtropical stratocumulus regime?
Observed Low Cloud Response to SST

- Decreased low-level cloudiness for warmer SST in stratocumulus regimes
Observed Low Cloud Response to SST

- Decreased low-level cloudiness for warmer SST in stratocumulus regimes
- Increased low-level cloud for warmer SST south of eastern cold tongue
Observed Low Cloud Response to SST

- Decreased low-level cloudiness for warmer SST in stratocumulus regimes
- Increased low-level cloud for warmer SST south of eastern cold tongue
- Strong positive coefficient in western equatorial Pacific may be artifact of obscuration adjustment in deep convective region
Observed Low Cloud Response to SST

- Decreased low-level cloudiness for warmer SST in stratocumulus regimes
- Increased low-level cloud for warmer SST south of eastern cold tongue
- Strong positive coefficient in western equatorial Pacific may be artifact of obscuration adjustment in deep convective region
- Mixture of weak positive, weak negative, and near-zero coefficients elsewhere
Observed Low Cloud Response to SST

- If obscuring effects of upper clouds are not taken into account, then greater and more widespread reduction of satellite-viewed low-level cloud for warmer SST
- Could lead to overestimate of positive low-level cloud feedback

Upper level cloud not a predictor
Outline

• Ten-year retrospective – how far have we come? How far has Joel come?
• Prior work – conceptual model and Myers and Norris (2016)
• Challenges and solutions – confounding impact of upper-level cloud
• Cloud response to meteorology – physical processes and observed response
 • Radiative effects method – calculation of radiative impact of cloud response
• Radiative response to SST
• Regional radiative response
• Estimation of climate feedback
• Discussion and summary
Radiative Effects of Cloud Change

\(SW_{all} \) = TOA SW radiation flux averaged over cloudy and clear areas of the grid box

\(SW_{clr} \) = TOA SW radiation flux from clear areas of the box

\(SW_{CRE} \) = TOA SW cloud radiative effect

\(f_{cld} \) = fractional area of grid box covered by all clouds

\(SW_{ovc} \) = TOA SW radiation flux from cloudy areas of the grid box (as if overcast)
Radiative Effects of Cloud Change

\(SW_{\text{all}} \) = TOA SW radiation flux averaged over cloudy and clear areas of the grid box
\(SW_{\text{clr}} \) = TOA SW radiation flux from clear areas of the box
\(SW_{\text{CRE}} \) = TOA SW cloud radiative effect
\(f_{\text{cld}} \) = fractional area of grid box covered by all clouds
\(SW_{\text{ovc}} \) = TOA SW radiation flux from cloudy areas of the grid box (as if overcast)

\[
SW_{\text{all}} = SW_{\text{clr}} - SW_{\text{CRE}}
\]
Radiative Effects of Cloud Change

$SW_{all} = \text{TOA SW radiation flux averaged over cloudy and clear areas of the grid box}$

$SW_{clr} = \text{TOA SW radiation flux from clear areas of the box}$

$SW_{CRE} = \text{TOA SW cloud radiative effect}$

$f_{cld} = \text{fractional area of grid box covered by all clouds}$

$SW_{ovc} = \text{TOA SW radiation flux from cloudy areas of the grid box (as if overcast)}$

\[
SW_{all} = SW_{clr} - SW_{CRE}
\]

\[
SW_{ovc} = -\frac{SW_{CRE}}{f_{cld}}
\]
Radiative Effects of Cloud Change

\(SW_{all} = \) TOA SW radiation flux averaged over cloudy and clear areas of the grid box
\(SW_{clr} = \) TOA SW radiation flux from clear areas of the box
\(SW_{CRE} = \) TOA SW cloud radiative effect
\(f_{cld} = \) fractional area of grid box covered by all clouds
\(SW_{ovc} = \) TOA SW radiation flux from cloudy areas of the grid box (as if overcast)

\[
SW_{all} = SW_{clr} - SW_{CRE}
\]

\[
SW_{ovc} = -\frac{SW_{CRE}}{f_{cld}}
\]

\[
SW_{all} = SW_{clr} + SW_{ovc} f_{cld}
\]
Radiative Effects of Cloud Change

\[SW_L = \text{TOA SW radiation flux from areas with low-level cloud (as if overcast)} \]

\[SW_U = \text{TOA SW radiation flux from areas with upper-level cloud (as if overcast)} \]
Radiative Effects of Cloud Change

$SW_L = TOA$ SW radiation flux from areas with low-level cloud (as if overcast)

$SW_U = TOA$ SW radiation flux from areas with upper-level cloud (as if overcast)

\[SW_{all} = SW_{clr} + SW_L L + SW_U U \]
Radiative Effects of Cloud Change

$SW_L = \text{TOA SW radiation flux from areas with low-level cloud (as if overcast)}$

$SW_U = \text{TOA SW radiation flux from areas with upper-level cloud (as if overcast)}$

$$SW_{all} = SW_{clr} + SW_L L + SW_U U$$

$$SW_{all} = SW_{clr} + SW_L (1 - U)L_n + SW_U U$$
Radiative Effects of Cloud Change

\(SW_L = \text{TOA SW radiation flux from areas with low-level cloud (as if overcast)} \)

\(SW_U = \text{TOA SW radiation flux from areas with upper-level cloud (as if overcast)} \)

\[
\begin{align*}
SW_{all} &= SW_{clr} + SW_L L + SW_U U \\
SW_{all} &= SW_{clr} + SW_L (1 - U) L_n + SW_U U \\
SW'_{all} &= SW'_{clr} + \overline{SW_L} L' + SW'_L \overline{L} + \overline{SW_U} U' + SW'_U \overline{U} \\
SW'_{all} &= SW'_{clr} + \overline{SW_L} (1 - \overline{U}) L'_n + SW'_L (1 - \overline{U}) \overline{L}_n + \overline{SW_U} U' + SW'_U \overline{U}
\end{align*}
\]

ignore 2nd-order terms (small)
Radiative Effects of Cloud Change

\(SW_L = \) TOA SW radiation flux from areas with low-level cloud (as if overcast)

\(SW_U = \) TOA SW radiation flux from areas with upper-level cloud (as if overcast)

\[
SW_{all} = SW_{clr} + SW_L L + SW_U U
\]

\[
SW_{all} = SW_{clr} + SW_L (1 - U) L_n + SW_U U
\]

\[
SW'_{all} = SW'_{clr} + \overline{SW_L} L' + SW'_L L + \overline{SW_U} U' + SW'_U \overline{U}
\]

\[
SW'_{all} = SW'_{clr} + \overline{SW_L (1 - \overline{U})} L'_n + SW'_L (1 - \overline{U}) L_n + \overline{SW_U} U' + SW'_U \overline{U}
\]

- radiative anomaly from changes in low-level cloud fraction
- radiative anomaly from changes in low-level cloud optical thickness, etc.
Radiative Effects of Cloud Change

\(SW_L = \) TOA SW radiation flux from areas with low-level cloud (as if overcast)
\(SW_U = \) TOA SW radiation flux from areas with upper-level cloud (as if overcast)

\[
SW_{all} = SW_{clr} + SW_L L + SW_U U
\]
\[
SW'_{all} = SW_{clr} + SW_L (1 - U)L_n + SW_U U
\]

radiative anomaly from changes in low-level cloud fraction
radiative anomaly from changes in low-level cloud optical thickness, etc. - small, so ignore
Radiative Effects of Low Cloud Change

\[\text{SW}_L = \text{TOA SW radiation flux from areas with low-level cloud (as if overcast)} \]

\[\overline{\text{SW}_L} (1 - \overline{U}) \]

radiative scaling for changes in low-level cloud fraction not obscured by higher clouds
Radiative Effects of Low Cloud Change

$$SW_L = \text{TOA SW radiation flux from areas with low-level cloud (as if overcast)}$$

$$\overline{SW_L} (1 - \overline{U})$$

radiative scaling for changes in low-level cloud fraction not obscured by higher clouds

multiply L_n cloud response coefficients by this scaling

multiply L cloud response coefficients without $(1 - U)$
Outline

• Ten-year retrospective – how far have we come? How far has Joel come?
• Prior work – conceptual model and Myers and Norris (2016)
• Challenges and solutions – confounding impact of upper-level cloud
• Cloud response to meteorology – physical processes and observed response
• Radiative effects method – calculation of radiative impact of cloud response
• Radiative response to SST – spatial pattern of observed response
• Regional radiative response
• Estimation of climate feedback
• Discussion and summary
SW Low Cloud Radiative Response to SST

- Increased SW absorption for warmer SST in stratocumulus regimes
- Decreased SW absorption for warmer SST south of eastern cold tongue
- Warmer SST has near-zero effect on SW absorption over most other regions of the global ocean
LW Low Cloud Radiative Response to SST

• Pattern of LW cloud response has opposite sign to SW response but weaker magnitude (note smaller scale)
Net Low Cloud Radiative Response to SST

- More energy retained by climate system for warmer SST in stratocumulus regions
- Less energy retained by climate system for warmer SST south of eastern equatorial cold tongue
- Warmer SST has near-zero effect on net energy retained by climate system over most other regions of the global ocean
- Results of Myers and Norris (2016) may not be globally applicable
Net Low Cloud Radiative Response to SST

- If obscuring effects of upper clouds are not taken into account, then more energy retained by the climate system for warmer SST
- Could lead to overestimate of positive low-level cloud feedback

Upper level cloud not a predictor
Outline

• Ten-year retrospective – how far have we come? How far has Joel come?
• Prior work – conceptual model and Myers and Norris (2016)
• Challenges and solutions – confounding impact of upper-level cloud
• Cloud response to meteorology – physical processes and observed response
• Radiative effects method – calculation of radiative impact of cloud response
• Radiative response to SST – spatial pattern of observed response
• Regional radiative response – response to meteorology for different climate regimes
• Estimation of climate feedback
• Discussion and summary
Define Regions for Averaging

Subsidence stratocumulus

- Cold advection
 \[\text{SST}_\text{adv} < 0 \text{ K day}^{-1} \]
- Strong subsidence
 \[\omega_{700} > 25 \text{ hPa day}^{-1} \]
- Strong inversion
 \[\text{EIS} > 0.5 \text{ K} \]
Define Regions for Averaging

Trade cumulus

- Cold advection
 \[\text{SSTadv} < 0 \text{ K day}^{-1} \]
- Weak subsidence
 \[-5 < \omega_{700} < 25 \text{ hPa day}^{-1} \]
- Weak inversion
 \[-2 < \text{EIS} < 0.5 \text{ K} \]
Define Regions for Averaging

Deep convection

- Ascent
 \[\omega_{700} < -5 \text{ hPa day}^{-1} \]
- No inversion
 \[\text{EIS} < -2 \text{ K} \]
- Tropical
 \[\text{latitude} < 30^\circ \]
Define Regions for Averaging

Midlatitude

- Warm advection
 \[\text{SSTadv} > 0 \text{ K day}^{-1} \]
- And/or ascent
 \[\omega_{700} < 0 \text{ hPa day}^{-1} \]
- Stable
 \[\text{EIS} > 0 \text{ K} \]
Define Regions for Averaging

Southeastern Pacific cold tongue

- General area of warm advection
 - $10^\circ S < \text{latitude} < 0^\circ$
 - $80^\circ W < \text{longitude} < 110^\circ W$
Define Regions for Averaging

All regions

- Subtropical stratocumulus
- Trade cumulus
- Deep convection
- Midlatitude
- Southeastern Pacific cold tongue
Regional Low Cloud Radiative Response (SST)

For warmer SST...

- Stratocumulus regions have largest increase in SW absorption
- Southeastern cold tongue has large decrease in SW absorption
- Trade cumulus, deep convective, and midlatitude regions have very weak increase in SW absorption
- Average ocean has very weak increase in SW absorption
Regional Low Cloud Radiative Response (SST)

For warmer SST...

- Stratocumulus regions have largest increase in SW absorption
- Southeastern cold tongue has large decrease in SW absorption
- Trade cumulus, deep convective, and midlatitude regions have very weak increase in SW absorption
- Average ocean has very weak increase in SW absorption

Results of Myers and Norris (2016) are not globally applicable
Regional Low Cloud Radiative Response (SST)

- Net energy gain by climate system due to warmer SST
- This is very slightly weaker than SW absorption due to very small offsetting effect of LW
Regional Low Cloud Radiative Response (EIS)

• Net energy loss by climate system due to stronger inversion
• Cloud response is larger for regions with a trade inversion
Regional Low Cloud Radiative Response (SSTadv)

- Net energy loss by climate system due to stronger cold advection
- Cloud response is larger for regions with stronger SST gradients
Regional Low Cloud Radiative Response (W_S)

- Net energy gain by climate system due to weaker surface wind
- Cloud response is larger for trade wind regions
Regional Low Cloud Radiative Response (ω_{700})

- Very small or zero net energy loss by climate system due to weaker subsidence (note axis scale)
- Disagreement between two methods for handling obscuration may result from weak signal
- Cloud response is larger for regions dominated by subsidence
Regional Low Cloud Radiative Response (RH$_{700}$)

- Net energy loss by climate system due to greater relative humidity above the boundary layer.
- Cloud response is much larger south of the eastern equatorial cold tongue where there is near-surface stratification.

![Cloud Response Graph]

Net Radiative Response to RH$_{700}$

- Ln
- L
- Ln average
- L average

Cloud Response (W m$^{-2}$ °C$^{-1}$)

Sc Cu Deep Midlat Tongue
For a meteorological monthly anomaly of typical magnitude...

- Largest cloud radiative response for inversion strength and surface wind speed
- Smallest cloud radiative response for subsidence
- Small cloud radiative response in deep convective and midlatitude regions may be partly due to obscuration by higher clouds
What about meteorological changes occurring with global warming?
Outline

• Ten-year retrospective – how far have we come? How far has Joel come?
• Prior work – conceptual model and Myers and Norris (2016)
• Challenges and solutions – confounding impact of upper-level cloud
• Cloud response to meteorology – physical processes and observed response
• Radiative effects method – calculation of radiative impact of cloud response
• Radiative response to SST – spatial pattern of observed response
• Regional radiative response – response to meteorology for different climate regimes
• Estimation of climate feedback – is it positive, as suggested by prior work?
• Discussion and summary
Myers and Norris (2016) suggests the following changes will occur per degree global warming...

(all relative to typical monthly anomaly)
Myers and Norris (2016) suggests the following changes will occur per degree global warming...

(all relative to typical monthly anomaly)

- 1.4× warmer SST
Myers and Norris (2016) suggests the following changes will occur per degree global warming...

(all relative to typical monthly anomaly)

- 1.4× warmer SST
- 0.35× stronger inversion
Myers and Norris (2016) suggests the following changes will occur per degree global warming...

(All relative to typical monthly anomaly)

• 1.4× warmer SST
• 0.35× stronger inversion
• 0.05× stronger SST advection
• 0.1× weaker surface wind
• 0.1× weaker subsidence
• 0.05× greater RH700

Low-Level Cloud Feedback on Climate

Net Radiative Response to Meteorology
Myers and Norris (2016) suggests the following changes will occur per degree global warming...

Obtained for subsidence regions; assumed to be globally uniform

- 1.4× warmer SST
- 0.35× stronger inversion
- 0.05× stronger SST advection
- 0.1× weaker surface wind
- 0.1× weaker subsidence
- 0.05× greater RH$_{700}$
Low-Level Cloud Feedback on Climate

- Positive low-level cloud feedback from warming SST (*except cold tongue*)
- Negative low-level cloud feedback from strengthening inversion
- Effects of other meteorological changes are small
Low-Level Cloud Feedback on Climate

- Positive low-level cloud feedback from warming SST (except cold tongue)
- Negative low-level cloud feedback from strengthening inversion
- Effects of other meteorological changes are small

What about differing areal sizes of climate regimes?
Low-Level Cloud Feedback on Climate

After adjustment according to area covered by each climate regime...

- Stratocumulus regime is relatively less important
- Cold tongue regime is much less important

Net Radiative Response to Global Warming
The total low-level cloud feedback is:

- Positive for stratocumulus regime
- Negative for trade cumulus, midlatitude, and southeastern Pacific cold tongue regimes
- Zero for deep convection regime
Low-Level Cloud Feedback on Climate

The total low-level cloud feedback is
- Positive for stratocumulus regime
- Negative for trade cumulus, midlatitude, and southeastern Pacific cold tongue regimes
- Zero for deep convection regime
- About $-0.1 \, \text{W m}^{-2}$ averaged over the global ocean
- About $-0.06 \, \text{W m}^{-2}$ prorated globally – essentially zero
Outline

• Ten-year retrospective – how far have we come? How far has Joel come?
• Prior work – conceptual model and Myers and Norris (2016)
• Challenges and solutions – confounding impact of upper-level cloud
• Cloud response to meteorology – physical processes and observed response
• Radiative effects method – calculation of radiative impact of cloud response
• Radiative response to SST – spatial pattern of observed response
• Regional radiative response – response to meteorology for different climate regimes
• Estimation of climate feedback – is it positive, as suggested by prior work?

• Discussion and summary – shortcomings, uncertainties, and conclusions
Known Shortcomings

Did not examine changes in cloud optical thickness

- Data are available
- Low-level cloud optical thickness feedback likely reinforces cloud fraction feedback
Known Shortcomings

Did not examine changes in cloud optical thickness

- Data are available
- Low-level cloud optical thickness feedback likely reinforces cloud fraction feedback

Projected 4xCO2 changes in SST and EIS from subsidence regime may not apply globally

- SST warming probably larger outside of stratocumulus regions
- EIS strengthening probably weaker outside of stratocumulus regions
- Estimated low-level cloud feedback is likely too negative
Uncertainties

Adjustment of low-level clouds for obscuring upper clouds assumes zero correlation

- Strong agreement between two approaches is reassuring
- Low and upper clouds probably preferentially co-occur in deep convective regions
- But deep convective region not so important due to widespread obscuration
Uncertainties

Adjustment of low-level clouds for obscuring upper clouds assumes zero correlation

- Strong agreement between two approaches is reassuring
- Low and upper clouds probably preferentially co-occur in deep convective regions
- But deep convective region not so important due to widespread obscuration

Monthly means average over daily variability, especially at midlatitudes

- Can be investigated using multi-day means
Uncertainties

Adjustment of low-level clouds for obscuring upper clouds assumes zero correlation

- Strong agreement between two approaches is reassuring
- Low and upper clouds probably preferentially co-occur in deep convective regions
- But deep convective region not so important due to widespread obscuration

Monthly means average over daily variability, especially at midlatitudes

- Can be investigated using multi-day means

What is the uncertainty range for coefficients derived from multilinear regression?

- Can be calculated using standard methods
Conclusions

Satellite combined with meteorology helps provide the best low cloud feedback estimate

- Empirical observation of cloud response to meteorological forcing
- Longer record will reduce sampling uncertainty
Conclusions

Satellite combined with meteorology helps provide the best low cloud feedback estimate
 • Empirical observation of cloud response to meteorological forcing
 • Longer record will reduce sampling uncertainty

Previous estimates of low cloud feedback derived from stratocumulus likely too positive
 • Probably not +0.4 W m\(^{-2}\) K\(^{-1}\) (Myers and Norris 2016, substantial uncertainty range)
 • Probably about 0 W m\(^{-2}\) K\(^{-1}\), with substantial uncertainty range
Conclusions

Satellite combined with meteorology helps provide the best low cloud feedback estimate
- Empirical observation of cloud response to meteorological forcing
- Longer record will reduce sampling uncertainty

Previous estimates of low cloud feedback derived from stratocumulus likely too positive
- Probably not +0.4 W m\(^{-2}\) K\(^{-1}\) (Myers and Norris 2016, substantial uncertainty range)
- Probably about 0 W m\(^{-2}\) K\(^{-1}\), with substantial uncertainty range

Subtropical stratocumulus exerts a strong positive feedback, but...
- Not representative of trade cumulus and midlatitude cloud
- Only covers a relatively small area of Earth
See you in 10 years!

(and sooner)
Extra Slides
Observed Low Cloud Response to Upper Cloud

- L_n' has near-zero response to upper cloud as a predictor over most of global ocean, as expected if there is no correlation between L_n' and U'
- L_n' increases with upper cloud in western tropical Pacific, suggesting that actual low-level cloud increases with upper-level cloud in that region
- L' decreases in response to upper cloud as a predictor over most of global ocean, as expected if increasing upper-level cloud obscures more low-level cloud
Adjusted Low Cloud Response to SST

Without U' as a predictor

With U' as a predictor