Introducing a new CM SAF Climate Data Record of Aerosol Optical Depth & Synergy with GERB observations.

Earth Radiation Budget Workshop 2018, Boulder, Colorado

Content

- Aerosol product for Climate Monitoring
- The Land Daily Aerosol (LDA) retrieval
- Climate Data Record (CDR) generation
- CDR main features and illustrations
- Validations wrt AeRoNet, MODIS and AERUS-Geo
- Strengths and limitations of the CDR
- Possible use with GERB products
- Summary
Aerosol Product for Climate Monitoring

- Aerosol properties is one of the Global Climate Observing Systems (GCOS) Essential Climate Variables (ECVs).
- Direct effect on the Earth Radiation Budget.
- Aerosol characterization is also a fundamental input for the retrieval of many ECVs like: the surface albedo, the LST, ...

- Requirements from GCOS-154:
 - Quantities: Aerosol Optical Depth (AOD) at 550nm.
 - 2nd importance: the Single Scattering Albedo (SSA) or Absorption Aerosol Optical Depth (AAOD)
 - Spatial: 5 - 10km
 - Temporal: 4 hours
 - Accuracy: Max(0.03, 10%) for AOD
 - Stability: < 0.01 / decade

Optimum: $|\text{AOD} - \text{AOD}_{\text{ref}}| < 0.03 + 0.1 \text{AOD}_{\text{ref}}$
Target: $|\text{AOD} - \text{AOD}_{\text{ref}}| < 0.05 + 0.2 \text{AOD}_{\text{ref}}$
Threshold: $|\text{AOD} - \text{AOD}_{\text{ref}}| < 0.10 + 0.4 \text{AOD}_{\text{ref}}$
The Land Daily Aerosol (LDA) retrieval

- Developed at EUMETSAT (MPEF/CF) by Y. Govaerts and S. Wagner but never put in “operation”
- Main input: diurnal cycle of SEVIRI visible band observations (0.6µm, 0.8µm, 1.6µm)
- Based on the Optimal Estimation
- Simultaneous retrieval of aerosol and surface properties:
 - AOD at 550nm
 - Surface RPV parameters (ρ, k, θ, h) in 3 bands
 -> Total of 13 unknowns / pixels
- Look-Up Tables (LUTs) constructed off-line
- Can use several aerosol models and select the best-suited.
- Also estimate the uncertainty on the retrieved AOD

<table>
<thead>
<tr>
<th>Aerosol models provided in LDA</th>
<th>Activated for CM-21101</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDA_SPH_NONABS</td>
<td>Spherical Non Absorbing</td>
</tr>
<tr>
<td>LDA_SPH_MODABS</td>
<td>Spherical Moderately Absorbing</td>
</tr>
<tr>
<td>LDA_SPH_ABSORB</td>
<td>Spherical Absorbing</td>
</tr>
<tr>
<td>LDA_NSU_SMARAD</td>
<td>Non Spherical Small Radius</td>
</tr>
<tr>
<td>LDA_NSU_MEDRAD</td>
<td>Non Spherical Medium Radius</td>
</tr>
<tr>
<td>LDA_NSU_LARRAD</td>
<td>Non Spherical Large Radius</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>h</th>
<th>RPV parameter controlling the hot spot peak (unit less)</th>
<th>0.15</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCWV</td>
<td>total column of water vapor (kg/m²)</td>
<td>0 to 60 by step of 10</td>
</tr>
<tr>
<td>TCO3</td>
<td>total column of ozone (Dobson)</td>
<td>200 to 400 by step of 50</td>
</tr>
<tr>
<td>SZA</td>
<td>Solar Zenith Angle (°)</td>
<td>0° to 70° by step of 2°</td>
</tr>
<tr>
<td>VZA</td>
<td>Viewing Zenith Angle (°)</td>
<td>0° to 70° by step of 2°</td>
</tr>
<tr>
<td>RAA</td>
<td>Relative Azimuth Angle (°)</td>
<td>0° to 180° by step of 10°</td>
</tr>
</tbody>
</table>

Figure 1: Processing flowchart
Algorithm adaptations for Climate Monitoring

- Cloud mask from CM SAF CLAAS data record (CM-21012)
 - Based on the SAF NWC GEO cloud mask (PGE01)
 - Rejection of cloudy and “snow” pixels
 - Accept the “dust” pixels

- SEVIRI solar channel calibration from Meirink et al (2013)
 - based on MODIS Aqua
 - Follows the instrument ageing
 - Avoid “jumps” in the SSCC operational calibration
Data record generation, main features and illustrations

• Applied to Meteosat-8 and -9: 1st Feb. 2004 to 31 Dec. 2012 (9 years)
• Processing on the ECMWF supercomputers
 – 2 (cca & ccb) x 30 (tasks) x 48 (threads) = 2880 threads in parallel for about 2 months
 – Costed: ~30 billions SBU (ECMWF processing billing units)

• Area: Meteosat FOV limited at VZA<=70° and SZA<=70°
• Spatial: 3km sub-satellite
• Temporal: daily and monthly mean
• AOD range: 0.05 to 1.5
• Same algorithm over land and ocean (consistency)
CDR – Ancillary fields (daily product)

AOD error

aerosol class

- non spherical medium radius
- spherical non absorbing
- spherical moderately absorbing
- spherical absorbing

frequency of cloudy neighbour

frequency clear sky

frequency dust
• Validations – comparison with AeRoNet - daily

 • Most stations: good results in terms of bias and RMS difference.
 • Many African stations: desert dust events with AOD higher than 1.5 affects the linear fit, e.g. at Dakar, Capo Verde or Agoufou.
 • Overestimation for AeRoNet stations located on mountains: e.g. Izana, Tenerife island (2367m) or Davos (1596m).
 • Coastal stations: in general less good results due to 1.5 rectification, e.g. at Ascension Island.

• Product within threshold requirement

\[| \text{AOD} - \text{AOD}_{\text{ref}} | < 0.1 + 0.4 \text{AOD}_{\text{ref}} \]

• Product close to target requirement

\[| \text{AOD} - \text{AOD}_{\text{ref}} | < 0.05 + 0.2 \text{AOD}_{\text{ref}} \]

114 AeRoNet stations provide useful measurements for validation
Validations – comparison with AeRoNet - monthly

- Monthly AOD product within target requirement:

\[| \text{AOD} - \text{AOD}_{\text{ref}} | < 0.05 + 0.2 \text{AOD}_{\text{ref}} \]
Validations – comparison with MODIS/AERUS-GEO products - daily

- Verify results over the ocean and over areas without AeRoNet stations

- MOD/MYD: MODIS Terra/Aqua level 3 aerosol combining the “dark target” and “deep blue” algorithms (collection 6).

- AERUS-Geo: Aerosol and surface albEdo Retrieval Using a directional Splitting method – application to Geo data (Meteo-France).
Comparison with MODIS – monthly bias/RMS

Bias between monthly mean AOD and MxD (average of MOD and MYD) for the 12 calendar months

RMS difference between monthly mean AOD and MxD (average of MOD and MYD) for the 12 calendar months
Validation – CDR stability wrt AeRoNet

Bias in daily AOD

Bias in monthly AOD

RMS difference in daily AOD

RMS difference in monthly AOD
Strengths and limitations

The **strength** points of CM-21101 are:

- **Good spatial sampling** of the product (3km at sub-satellite point) that permits the study of fine scale aerosol patterns, e.g. the pollution in cities/industrial regions, effect of sea breeze and local winds, ...
- More **frequent daily retrievals** than with polar satellite observations, especially in the Equatorial region. For instance, in the region 30°S - 30°N, the frequency of retrievals (in boxes of 1°x1°) is about 77 while limited to about 60% in the MODIS level 3 data record.
- **Synergy with other CM SAF CLAAS and GERB products** (surface and TOA radiation, cloud properties, ...)
- The **consistency between the land and ocean retrievals** is obtained by using the same algorithm and the same LUTs over both surface types.
- **Cloud mask** : the product is based on an accurate, stable in time, and well documented cloud screening. This cloud screening accounts for the presence of dust.

Clear limitations also exist:

- A **positive bias for low AOD** is observed with respect to AeRoNet, MODIS and AERUS-Geo, likely due to the minimum AOD value of 0.05 (lower values are observed at AeRoNet stations in about 8% of the time).
- A **negative bias is observed at high AOD** due to the maximum AOD of 1.5. LDA.
- Possible **problems in separating the surface and aerosol signal** in some limited regions: Niger/Mali and South of Algeria, Eastern Africa.
- The **retrieval is limited to VZA<70° and SZA<70°**
CM-21301 (aka “CM SAF GERB ed02”):

- Combine GERB/SEVIRI
- Feb. 2004 – Apr. 2015
- Daily mean, Monthly mean and monthly mean diurnal cycle
- GERB L2 High-Resolution (HR) grid + regrid to reg. lat-lon @ 0.1°x0.1°
- “Allsky” and “clearsky” fluxes
- Available from CM SAF (http://www.cmsaf.eu)
Combining CM-21101 with CM-21301

- Period: 1st June – 12 July for years 2004 - 2012
- Mostly GERB (few “GERB-like”)
- Frequency of clear sky should be > 99% (but estimated for SZA < 70\degree)
- AOD averaged in GERB HR pixels
Combining CM-21101 with CM-21301

Eastern North Atlantic
off Mauritania coast

Eastern South Atlantic
off Angola/ Namibia coast
Combining CM-21101 with CM-21301

Desert surface in Mali

South of RDC
(absorbing aerosols?)
Summary

- Climate Data Record of MSG/SEVIRI Aerosol Optical Depth based on the Land Daily Aerosol (LDA) algorithm
- Full SEVIRI spatial resolution, daily and monthly
- Data (NetCDF files) and documentation (ATBD, Val Rep, PUM) available via CM SAF (http://www.cmsaf.eu).
- Overall accuracies similar to MODIS and AERUS-Geo products.
- Synergy with the GERB HR fluxes