The Spectral Decomposition of LW Cloud Radiative Feedbacks: Implications for Emergent Constrains

Xiuhong Chen, Xianglei Huang1, Qing Yue2
\begin{itemize}
\item 1 The University of Michigan
\item 2 JPL/Caltech
\end{itemize}

2017 CERES Fall Science Team Meeting
Greenbelt, MD
Sep 28, 2017

Acknowledgements: NASA CERES project, Terra/Aqua and CloudSat programs
• Motivations
 – Why go beyond the broadband comparison
• Methodology
• Band-by-band LW CRE: CESM vs. obs
• Band-by-band LW long-term cloud feedbacks
• Band-by-band LW short-term cloud radiative feedbacks (fluctuations): model vs. obs in 2003-2013
• Discussion and Conclusions
What spectral dimension can offer?

Reveal compensating differences that cannot be revealed in broadband diagnostics alone.
LW Broadband

H$_2$O bands (0-540 cm$^{-1}$, >1400 cm$^{-1}$) window region (800-980 cm$^{-1}$)

\[
\int \Delta v B_v(T_s) dv - F_{\Delta v}(TOA) \\
\int \Delta v B_v(T_s) dv
\]

clear-sky greenhouse efficiency

AMIP runs forced by observed SST

Obs from collocated AIRS and CERES (Huang et al., 2008; Chen et al., 2013)

(GEOS5 simulation provided by L. Oreopoulos et al; CanAM4 provided by J. Cole)
Derivation of spectrally resolved fluxes, CRE, and feedbacks

- **Observations**
 - Directly invert from AIRS radiances following the scene type classification of CERES (Huang et al., 2008; Chen et al., 2013; Huang et al., 2014)
 - Outcome: spectral flux at 10cm$^{-1}$ interval over the entire LW spectrum (09/2002 to present)
 - Observation-based cloud radiative kernel (Yue et al., 2016)
 - Make use of CERES/MODIS/AIRS product
 - A composite approach (k-NN method in ML jargon)
10-year mean spectral CRE over the different climate zones

(Huang et al., 2014, J Climate)
Model: CESM

- NCAR CESM v1.1.1 (RRTMG_LW as LW rad scheme)
- Simple code modification to output band-by-band fluxes and CRE over each RRTMG_LW band.
- Spectral radiative kernels (Huang et al., 2014, GRL) to derive spectral details of Planck/Lapse-rate/WV feedbacks
- Cloud feedbacks (both broadband and band-by-band)
 - Adjustment method (Soden et al., 2008)
 \[
 \delta_c R = dC_{RF} + (K^0_T - K_T)dT + (K^0_W - K_W)dW + (K^0_a - K_a)da + (G^0 - G).
 \]
 - Cloud radiative kernel method based on Yue et al. (2016), built for every RRTMG_LW band.
Derived cloud radiative kernels

Model-based kernel
(Zelinka et al., 2012)

MODIS-based kernel
(Yue et al. 2016)

CESM-based kernel following Yue et al. (2016)

January

Pressure(hPa)

\(\tau_{\text{vis}} \)

\(Wm^{-2}/\% \)

July

Pressure(hPa)

\(\tau_{\text{vis}} \)

\(Wm^{-2}/\% \)
Cloud feedbacks from two methods: adjust vs. kernel

LW Cloud feedbacks for 2xCO$_2$ fully-coupled run

Adjust: 0.16 Wm$^{-2}$/K
Kernel: 0.16 Wm$^{-2}$/K
Kernel – Adjust: 0.008 Wm$^{-2}$/K

LW Cloud feedbacks for +2K SST run

Adjust: 0.23 Wm$^{-2}$/K
Kernel: 0.32 Wm$^{-2}$/K
Kernel – Adjust: 0.09 Wm$^{-2}$/K
Results
Observed averages of 2003-2015

CAM5 forced with observed SST from 2003 to 2015 (total run 2000-2015)

Differences of Model - Obs
The band-by-band decomposition of LW cloud feedback is different for double CO$_2$ and +2K SST run. The decomposition from different methods can be different too, even the broadband numbers are identical.
Band-by-band Cloud radiative feedback from 2×CO₂ run (Adjust method)

10-250 cm⁻¹, 0.005
250-500 cm⁻¹, 0.044
500-630 cm⁻¹, 0.048
700-820 cm⁻¹, 0.017
820-980 cm⁻¹, 0.008
980-1080 cm⁻¹, 0.011
1080-1180 cm⁻¹, -8.8x10⁻⁴
1180-1390 cm⁻¹, 0.019
1390-1480 cm⁻¹, 0.004
Band-by-band Cloud radiative feedback from 2×CO₂ run (kernel method)

10-250 cm⁻¹, 0.007 (global val)

250-500 cm⁻¹, 0.027

500-630 cm⁻¹, 0.029

700-820 cm⁻¹, 0.024

820-980 cm⁻¹, 0.032

980-1080 cm⁻¹, 0.010

1080-1180 cm⁻¹, 0.012

1180-1390 cm⁻¹, 0.013

1390-1480 cm⁻¹, 0.002
Short-term fluctuation of 2003-2015 (Preliminary)

• CESM simulation: using Dessler’s method to obtain an estimation of short-term cloud feedback

• Observation: applying Yue et al. (2016) to MODIS, AIRS and CERES data to obtain the same quantity (preliminary)

![CESM, 0.61 Wm\(^{-2}\)/K]

![Obs, -0.21 Wm\(^{-2}\)/K]
Long-term vs. short-term contrast

Band-by-band partitioning of LW CRE
Long-term vs. short-term
2xCO₂ vs. +2K SST

Broadband LW cloud feedback
Fully coupled run (long-term): 0.16 Wm⁻²/K
+2K SST run (long-term): 0.23 Wm⁻²/K
AMIP run (short-term): 0.61 Wm⁻²/K
Observation (short-term): -0.21 Wm⁻²/K
Conclusion and Discussion

• Spectral decomposition helps revealing compensating biases.
 – Compensating biases (t; x, y, \(p \)) vs. (t; x, y, \(v \))

• Different ways of estimating cloud feedbacks can lead to different spectral decomposition.

• The long-term vs. short-term cloud feedbacks have different spectral decomposition
 – Implications for emergent constrains
Geophysical variables

- \(T(z) \)
- \(q_{H2O}(z) \)
- \(q_{O3}(z) \)
- \(q_{CH4}(z) \)
- Aerosols
- \(T_{skin}, \varepsilon_s(v) \)
- Cloud,

Spectral Radiances

\[I_{TOA}(v; \theta, \phi) \]

Spectral Flux

\[F_v = \int_0^{2\pi} d\phi \int_0^{\frac{\pi}{2}} I_{TOA}(v; \theta, \phi) \cos \theta \sin \theta d\theta \]

Broadband Radiation Budget

\[F = \int_{\Delta v} F_v dv \]

Spectral Radiative Feedbacks

\[\lambda_v = -\frac{\delta_x \overline{F_v} \delta X}{\delta X \delta T_s} \]

Broadband Radiative Feedbacks

\[\lambda_x = -\frac{\delta_x \overline{F} \delta X}{\delta X \delta T_s} \]

Energy budget and feedbacks community

Sounding community

ISCCP effort
Thank You!

References:

2. Chen et al., 2013: Comparisons of clear-sky outgoing far-IR flux inferred from satellite observations and computed from three most recent reanalysis products, *Journal of Climate*, 26(2), 478-494, doi:10.1175/JCLI-D-12-00212.1.

The spectral radiative kernels available upon request.
CESM cloud radiative kernel

- 3-hourly CESM output from coupled CESM runs (3 years of control run);
- Mean cloud top pressure is calculated as the average of pressure on different layer weighted by layer cloud fraction;
- In cloud optical depth is computed from liquid/ice water content using method in Chen et al. (2013); then mean cloud optical depth is weighted average by layer cloud fraction.
- ISCCP-like histogram is generated;
- Cloud radiative kernel is computed by dividing mean CRF by mean cloud fraction for each bin of the histogram.

Different from the MAST-MODIS cloud retrieval algorithm, the CERES-MODIS cloud properties are reported up to two cloud layers for each pixel at the nadir resolution of 20 km (Minnis et al. 2011a). The column-mean cloud fraction is calculated as the summation over two cloud layers, and the mean CTP and τ are calculated as the average of values on different layers weighted by layer CF. Yue et al. (2016)
A trait of spectral (band-by-band) CRE

\[CRE_{LW} = \sigma T_s^4 - [f \sigma T_c^4 + (1-f)\sigma T_s^4] = f \left[\sigma T_s^4 - \sigma T_c^4 \right] \]

\[CRE(\Delta \nu) = f [F_{clr}(\Delta \nu) - F_{cld}(\Delta \nu)] \]

Fractional contribution

\[r(\Delta \nu) = \frac{CRE(\Delta \nu)}{CRE_{LW}} = \frac{F_{clr}(\Delta \nu) - F_{cld}(\Delta \nu)}{[\sigma T_s^4 - \sigma T_c^4]} \]

Band-to-Band ratio: sensitive to CTH but not cloud amount
LW CRE: sensitive to both CTH and cloud amount
Outcome: ratio-then-broadband approach (Huang et al., 2014, J Climate)
AIRS2CERES:
Average of 2003-2015

Fully coupled run:
Average of Years 6-35
Prescribed run forced with observed SST: Average of Years 2003-2015
Band-by-band Cloud radiative feedback from $2\times$CO$_2$ run

- **10-250 cm$^{-1}$**, 0.005 (global val)
- **250-500 cm$^{-1}$**, 0.044
- **500-630 cm$^{-1}$**, 0.095
- **700-820 cm$^{-1}$**, 0.102
- **820-980 cm$^{-1}$**, 0.017
- **980-1080 cm$^{-1}$**, 0.017
- **1080-1180 cm$^{-1}$**, -2×10^{-4}
- **1180-1390 cm$^{-1}$**, 0.020
- **1390-1480 cm$^{-1}$**, 0.004

Wm$^{-2}$/K
Long-term vs. short-term contrast

Broadband LW cloud feedback
Slab ocean run: 0.25 Wm\(^{-2}/K\)
Fully coupled run: 0.31 Wm\(^{-2}/K\)
Forced SST run: 0.61 Wm\(^{-2}/K\)
Observation: -0.21 Wm\(^{-2}/K\)

Do we have an update on this slide, especially the obs plot?
What spectral dimension can offer?

Reveal compensating differences that cannot be revealed in broadband diagnostics alone.

Spectral decomposition of broadband lapse-rate feedback (Huang et al., 2014, GRL)
Observation: 2003-2015

500-630 cm\(^{-1}\) (2.89 Wm\(^{-2}\))

CAM5 forced by observed SST 2003-2015

500-630 cm\(^{-1}\) (2.61 Wm\(^{-2}\))

CAM5-Obs

500-630 cm\(^{-1}\) (-0.28 Wm\(^{-2}\))

820-980 cm\(^{-1}\) (7.48 Wm\(^{-2}\))

820-980 cm\(^{-1}\) (7.59 Wm\(^{-2}\))

820-980 cm\(^{-1}\) (-0.10 Wm\(^{-2}\))
*** Please make another page with two plots for CAM5-Obs (i.e., middle column – left column)