Analysis of Errors in the modeling of CERES SW observations over Antarctica introduced by the BRDF model

Alexander Radkevich1), Seiji Kato2)
1) SSAI, 2) NASA LaRC
Current results of the modeling

- High correlation between the model and observations.
- FM-5 sensor is known to be slightly brighter than other instruments.
- We still need to find a reason for ~5% discrepancy.
All observations are clustered in the relatively narrow azimuth sector. For this reason, only results in azimuth plane $\phi = 63^\circ$ (117°) are reported in this study.
BRDF model recap 1:
what was measured in Dome C and how it was reported

• spectral resolution: 25 nm; spectral range: 350 – 2400 nm;
• reflected spectral radiance was measured on a set of 6 VZA: (7.5°, 22.5°, 37.5°, 52.5°, 67.5°, 82.5°) and a number of azimuth directions;
• simultaneous measurements of reflected spectral irradiance;
• down- and up-welling irradiances under complete overcast.

The results were reported in the form of:
• the ratio of reflected radiance and irradiance under natural (blue-sky) illumination; it was called anisotropic reflection factor R;
• albedo under overcast conditions (it serves as a very accurate surrogate of bi-hemispherical reflection, a.k.a. white-sky albedo).
BRDF and related quantities

\[\rho(\theta_i, \theta_r, \phi_i - \phi_r) = \frac{I_r(\theta_i, \theta_r, \phi_i - \phi_r)}{F_0(\theta_i, \phi_i)} \quad \text{BRDF} \]

\[I_r(\theta_i, \theta_r, \phi_i - \phi_r) \quad \text{Reflected radiance} \]

\[F_0(\theta_i, \phi_i) \quad \text{Illuminating irradiance (incoming flux) coming from a single direction (\(\theta_i, \phi_i\))} \]

\[\rho(\theta_i, \theta_r, \phi) = \frac{1}{\pi} \frac{\pi I_r(\theta_i, \theta_r, \phi) F_r(\theta_i)}{F_r(\theta_i)} = \frac{1}{\pi} \mathcal{R}(\theta_i, \theta_r, \phi) a_{\text{black-sky}}(\theta_i) \]

\[F_r(\theta_i) = \int_0^{2\pi} d\phi \int_0^{\pi/2} d\theta_r \sin \theta_r \cos \theta_r I_r(\theta_i, \theta_r, \phi) \quad \text{Reflected irradiance (outcoming flux) under monodirectional illumination} \]

\[\mathcal{R}(\theta_i, \theta_r, \phi) = \frac{\pi I_r(\theta_i, \theta_r, \phi)}{F_r(\theta_i)} \quad \text{True anisotropic reflection factor} \]

\[a_{\text{black-sky}}(\theta_i) = \frac{F_r(\theta_i)}{F_0(\theta_i)} \quad \text{Directional-hemispherical reflectance (black sky albedo, BSA)} \]

\[R(\theta_i, \theta_r, \phi, \text{atm}) = \frac{\pi I_r^{\text{measured}}(\theta_i, \theta_r, \phi)}{F_r^{\text{measured}}(\theta_i)} \quad \text{Measured anisotropic reflection factor} \]

BRDF cannot be measured under natural light illumination (blue-sky) conditions: light comes to the surface from the solid angle of 2\(\pi\)
BRDF model recap 2: the use of measurements in Dome C

\[\rho(\theta_i, \theta_r, \phi) \approx \frac{1}{\pi} R(\theta_i, \theta_r, \phi) a_{\text{black-sky}}^{\text{model}}(\theta_i) \]

Approximations:

- \(a_{\text{black-sky}}^{\text{real}}(\theta_i) \approx a_{\text{black-sky}}^{\text{model}}(\theta_i) \)

- \(a_{\text{white-sky}}^{\text{model}} = 2 \int_0^{\pi/2} d\theta_i \sin \theta_i \cos \theta_i a_{\text{black-sky}}^{\text{model}}(\theta_i) \)

Model BSA comes from the RT modeling of a flat snowpack providing the closest match of white-sky albedo (WSA) with the measured albedo under overcast conditions.

Possible problems:
1) Directional distribution of light reflected from a rough surface differs from that for a flat one, so matching of WSA may provide a wrong choice of the overall brightness;
2) Both true ARF and BSA are approximated, so that reciprocity of BRDF is not guaranteed: \(R(\theta_i, \theta_r, \phi) a(\theta_i) \neq R(\theta_r, \theta_i, \phi) a(\theta_r) \)
Radiative transfer model

- 32 bands covering CERES SW band;
- monochromatic calculations performed by DISORT;
- accounts for Rayleigh scattering;
- gas absorption (correlated-k (Kato et al. 1999), HITRAN 2000);
- clouds and aerosol scattering and absorption (if any);
- auxiliary data (surface pressure, O3 and water vapor concentrations, and surface elevation) come from re-analysis used in CERES production – GEOS4 (2000 – 2007), GEOS5 (2008 – present);
- accurate bottom boundary condition.

Bands 7 through 18 covering spectral range from 407 nm to 791 nm are used in this study. They are the most reflective bands accumulating total solar irradiance of 636 W/m².
BRDF model recap 3: limited SZA range

Surface boundary condition to the RTE

\[I(\tau = \tau_{surf}, \theta > \pi/2, \phi) = I_0 \cos \theta_s \rho(\theta_s, \theta, \phi) \exp\left(-\frac{\tau_{surf}}{\cos \theta_s}\right) \]

\[+ \int_0^{2\pi} d\phi' \int_0^{\pi/2} \sin \theta' d\theta' \cos \theta' \rho(\theta', \theta, \phi-\phi') I(\tau = \tau_{surf}, \theta', \phi') \]

BRDF \(\rho(\theta_i, \theta_r, \phi) \) is needed on \(0^\circ \leq \theta_i \leq 90^\circ \);

\(R(\theta_i, \theta_r, \phi) \) was measured on \(51.6^\circ \leq \theta_i \leq 86.6^\circ \)

assumptions:

1) \(R(\theta_i = 0, \theta_r, \phi) = 1 \)

\[R(0^\circ < \theta_i < 51.6^\circ, \theta_r, \phi) = \left[(1 - \cos \theta_i)R(\theta_i = 51.6^\circ, \theta_r, \phi) + (\cos \theta_i - \cos 51.6^\circ)\right]/(1 - \cos 51.6^\circ) \]

2) \(R(\theta_i > 86.6^\circ, \theta_r, \phi) \approx R(\theta_i = 86.6^\circ, \theta_r, \phi) \)
Is reflection isotropic under overhead sun?

Snowpack only, wavelength 0.549 through 0.567 um

Snowpack only, wavelength 0.667 through 0.684 um

Snowpack with atmosphere, wavelength 0.8 um

R(\theta_i = 0, \theta_r, \phi) = 1 is a wrong assumption
azimuth rotational symmetry holds

All graphs show ARF in 4 azimuth planes:
red – \phi = 0° (180° for negative VZA),
green – \phi = 30° (210°),
blue – \phi = 60° (240°),
cyan – \phi = 90° (270°).
BRDF model recap 4: spectral dependence

\[R(\theta_i, \theta_r, \phi, \lambda < 0.8 \, \mu m) \approx R(\theta_i, \theta_r, \phi, \lambda = 0.8 \, \mu m) \]

\[R(\lambda = 0.8 \, \mu m) \] better approximates \(\mathcal{R}(\lambda = 0.8 \, \mu m) \) than \(R(\lambda = 0.5 \, \mu m) \) does \(\mathcal{R}(\lambda = 0.5 \, \mu m) \). However, \(R(\lambda = 0.8 \, \mu m) \neq \mathcal{R}(\lambda < 0.8 \, \mu m) \)
Modeling results: TOA radiance, band 11

band radiance over spectral interval 0.549 μm through 0.567 μm: black – snowpack-only ARF, blue – snowpack+atmosphere ARF (model of measurable quantity), green – the same as blue but ARF at 0.8 μm, red – the same as green but with interpolation over SZA. RAA = 63° for positive VZA, RAA = 117° negative.
Modeling results: relative error, band 11

Relative error of band radiance over spectral interval 0.549 μm through 0.567 μm: blue – snowpack+atmosphere ARF (model with measurable quantity), green – the same as blue but ARF at 0.8 μm, red – the same as green but with interpolation over SZA. RAA = 63° for positive VZA, RAA = 117° negative.
Modeling results: total TOA radiance

Broadband radiance over spectral interval 0.407 μm through 0.791 μm: black – snowpack-only ARF, blue – snowpack+atmosphere ARF (model of measurable quantity), green – the same as blue but ARF at 0.8 μm, red – the same as green but with interpolation over SZA. RAA = 63° for positive VZA, RAA = 117° negative.
Modeling results: total radiance relative difference

Relative error of broadband radiance over spectral interval 0.407 μm through 0.791 μm:
- **blue** – snowpack+atmosphere ARF (model of measurable quantity),
- **green** – the same as **blue** but ARF at 0.8 μm,
- **red** – the same as **green** but with interpolation over SZA.

RAA = 63° for positive VZA, RAA = 117° negative.
Total TOA radiance modeled with ‘true’ and ‘measured’ ARF

“Measured” ARF: snowpack + atmosphere, no interpolation, no spectral assumptions, regression: \(I_{\text{measured_ARF}} = 1.0064 \times I_{\text{true_ARF}} \)

“Measured” ARF: snowpack + atmosphere, SZA interpolation, \(R_{\lambda<0.8} \rightarrow R_{\lambda=0.8} \), regression: \(I_{\text{measured_ARF}} = 0.9917 \times I_{\text{true_ARF}} \)
Conclusion

1. Assumption that ARF measured at the surface under blue sky condition can replace true ARF is not valid;

2. Assumption that ARF at 0.8 um can accurately replace ARF at shorter wavelengths is not valid;

3. Assumption that reflection is isotropic under zenith Sun is not valid;

4. Altogether the assumptions above lead to “lucky” cancellation of errors;

5. Thus, the actual reason for ~5% discrepancy between modeled and CERES measured radiance remains unclear.

Future work: how to resolve the problem

1. An algorithm of BRDF retrieval from ground measured radiance was developed;

2. The algorithm requires:
 a) measured radiance (not yet available);
 b) kernel-based BRDF model, e.g. MODIS BRDF;

3. Once data are available some tuning of BRDF kernels may be needed to accommodate specific features of snow.
Modeling results: TOA radiance, band 15

Band radiance over spectral interval 0.667 μm through 0.684 μm: black – snowpack-only ARF, blue – snowpack+atmosphere ARF (model of measurable quantity), green – the same as blue but ARF at 0.8 μm, red – the same as green but with interpolation over SZA. RAA = 63° for positive VZA, RAA = 117° negative.
Relative error of band radiance over spectral interval 0.667 μm through 0.684 μm: blue – snowpack+atmosphere ARF (model with measurable quantity), green – the same as blue but ARF at 0.8 μm, red – the same as green but with interpolation over SZA. RAA = 63° for positive VZA, RAA = 117° negative.
Modeling results: TOA radiance, band 18

Band radiance over spectral interval 0.743 μm through 0.791 μm: black – snowpack-only ARF, blue – snowpack+atmosphere ARF (model of measurable quantity), green – the same as blue but ARF at 0.8 μm, red – the same as green but with interpolation over SZA. RAA = 63° for positive VZA, RAA = 117° negative.
Relative error of band radiance over spectral interval 0.743 μm through 0.791 μm: blue – snowpack+atmosphere ARF (model of measurable quantity), green – the same as blue but ARF at 0.8 μm, red – the same as green but with interpolation over SZA. RAA = 63° for positive VZA, RAA = 117° negative.