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∆R = ∆F + λ ∆Ts

∆Ts = -∆F/λ 

= 0

At equilib
rium:

∆T2xCO2 = -∆F2xCO2/λ = ECS 

Q: is this the right way to describe 
our planet’s energy balance?

Q: is the response of the TOA flux 
linear in global avg. surface 

temperature?
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Slope = λ (W/m2/K)
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Global, monthly avg., 3/2000-9/2016Lesson: λ∆T is not a very good 
parameterization for ∆R (for 

interannual variability)

Should not be surprising: 
90% of TOA LW radiation emitted 

by atmosphere, not surface
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∆R = ΔF + λ ΔTS 
climate 
model

obs.

λ ≈ -2 W/m2/K 
ECS ≈ 1.5-2.0 K

OHC

This anchors the low end of the IPCC's  
ECS range to 1.5 K

Derive λ from 20th century record 
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Perfect model experiment

• 100-member MPI-ESM1.1 ensemble 
– model producing output for CMIP6 

• 1850-2005; identical historical forcing 
• only difference is the initial conditions
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For each ensemble member …
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For each ensemble member …

∆R = ΔF + λ ΔT 

solve for this
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λ = ∆(R-F)/∆Ts 
W/m2/K
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λ = ∆(R-F)/∆Ts 
W/m2/K

internal variability
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λ = ∆(R-F)/∆Ts ECS = -∆F2xCO2/λ

We only have one realization of the 20th century, so 
there’s no guarantee that λ and ECS based on these 

calculations are good estimates
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revised framework

∆R = ΔF + Θ ΔTA 
500-hPa tropical 

temperatures
Converts change  

in TA to flux; 
replaces λ

following Trenberth, Murphy, Spencer



CERES Ed. 4 TOA fluxes & ERA-interim temperatures 
monthly avg. detrended anomalies 

Ts = global avg. surface temperature 
TA = tropical avg. 500-hPa temperature
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λ = ∆(R-F)/∆TS
Θ = ∆(R-F)/∆TA

confirmed in CMIP5 control runs
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• Can we use our new framework to better 
predict ECS? 

• Use measurement of Θcontrol from CERES 
to constrain ECS  

• In CMIP5 ensemble, Θcontrol ≈ Θabrupt4xCO2
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∆R = ΔF + Θ ΔTA 
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ECS < 3.5 K



• the conventional energy balance 
framework has problems — TOA flux is 
not strongly related to surface 
temperature 

• creates problems inferring ECS from 
historical data 

• new framework using atmospheric 
temperature: ECS < 3.5 K
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Conclusions



backup slides
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CERES ∆R at each latitude vs. ∆Ts at that same latitude 
detrended monthly avg. anomalies



global vs. tropical T500
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20th century obs. record

∆R = ΔF + λ ΔT 
based on fixed SST runs

ensembleensemble
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CCSM4 CMIP5 control run

λ = ∆(R-F)/∆Ts

Θ = ∆(R-F)/∆T500t
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CMIP5 control runs

5-95% percentile range
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