EarthCARE BBR level 2 Products and Algorithms : BM-RAD, BMA-FLX

Earth Radiation Budget Workshop 2016
ECMWF, 20 October 2016

Carlos Domenech (FUB/GMV), Florian Tornow (FUB), Tobias Wehr (ESA), Almudena Velazquez Blazquez, Edward Baudrez, Nicolas Clerbaux (RMIB)
Content

• A single-slide introduction to the EarthCARE mission
• An introduction to the EarthCARE BroadBand Radiometer (BBR) instrument.
 - Configuration of the 3 views
 - Telescope and acquisition mechanism
• The BBR level 1 products
 - Concept of “integration domains”
• Processing toward level 2
 - The radiances unfiltering
 - The fluxes estimation (focus on LW, SW to be detailed tomorrow by Florian Tornow)
 - Weighting of the 3 LW fluxes: study based on CERES TAT data
• Summary
The ESA/JAXA EarthCARE Mission

Launch Date: official 2018/Q4

Duration: 3 years, (incl. 6 months commissioning).

The scientific objectives of the mission are:

- To observe vertical profiles of natural and anthropogenic aerosols on a global scale, their radiative properties and interaction with clouds
- To observe vertical distributions of atmospheric liquid water and ice on a global scale, their transport by clouds and their radiative impact
- To observe cloud distribution, cloud-precipitation interactions and the characteristics of vertical motions within clouds
- To retrieve profiles of atmospheric radiative heating and cooling through the combination of the retrieved aerosol and cloud properties

Mission orbit:

- Orbit: Sun-synchronous
- Mean solar local time: 14:00
- Mean spherical altitude: 393.14 km
- Inclination: 97.05 degrees
- Repeat cycle: 25 days/389 orbits 9 days/140 orbits
- Orbital duration: 5552.7 sec 5554.3 sec

Payload:

- The Atmospheric Lidar (ATLID) provides vertical profiles of aerosols and thin clouds. It operates at a wavelength of 355nm and has a high-spectral resolution receiver and depolarisation channel.
- The Cloud Profiling Radar (CPR) provides vertical profiles measurements of clouds and has the capability to observe vertical velocities of cloud particles through Doppler measurements. It operates at 94GHz.
- The Multi-Spectral Imager (MSI) provides across-track information on clouds and aerosols with channels in the visible, near infrared, shortwave- and thermal infrared.
- The Broad-Band Radiometer (BBR) provides measurements of top-of-the-atmosphere radiances and fluxes. It has one short-wave and one long-wave channel with three fixed viewing directions pointing in nadir and aft-directions.
BBR Viewing Configuration

- Along track sampling with 3 telescopes: nadir, fore and back (@55° VZA)
- Array of 30x1 detectors
- Across track sampling: 600m/1000m
- Swath: 18km/30km
Telescope detail and assembly

- Detectors: 30 x 1 Vanadium Oxide microbolometer array
- Single mirror optics (Aluminium coating)
- Two spectral channels: TW (0.2 – 50 μm) & SW (0.2 – 4 μm)
- Radiometric accuracy: SW: 2.5 W/m²/sr & LW: 1.5 W/m²/sr
Chopper and Calibration Drums

Chopper and chopper operation
Level 1 integration areas (PSF)

<table>
<thead>
<tr>
<th>Level 1 PSF</th>
<th>Size (across x along track)</th>
<th>ref</th>
<th>Level 2 unfil. rad</th>
<th>Level 2 fluxes</th>
<th>Level 2 combined flux</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>10x10km</td>
<td>BBR</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Small</td>
<td>5x10km</td>
<td>BBR</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Full</td>
<td>18 x 10km 30 x 10km</td>
<td>BBR</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Assessment Domain</td>
<td>5 x 21 km</td>
<td>JSG</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>JSG</td>
<td>1 x 1 km</td>
<td>JSG</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes
- all regions sampled @ 1km
- all dimensions are configurable
BBR instrument SW channel unfiltering

Surface type dependent Hyperbolic fit

$$\alpha_{sw} = a + b/L_{sw, sol}$$

Coefficients a, b dependent on geometry (SZA, VZA, RAA).

Note: Full description of the method and results in “ATBD”.
SW unfiltering by scene type

BBR SW Unfiltering factor for ocean (30°, 55°, 090°, SR 11/2013)

- Cloudy ocean: Fit 1.341554 + 0.492637 / x
- Clear ocean: RMS=0.002336, CVRMS=0.001727

BBR SW Unfiltering factor for rock (30°, 55°, 090°, SR 11/2013)

- Cloudy rock: Fit 1.343831 + 0.044731 / x
- Clear rock: RMS=0.003331, CVRMS=0.002479

BBR SW Unfiltering factor for vege (30°, 55°, 090°, SR 11/2013)

- Cloudy vege: Fit 1.344149 + 0.056239 / x
- Clear vege: RMS=0.002730, CVRMS=0.002030

BBR SW Unfiltering factor for snow (30°, 55°, 090°, SR 11/2013)

- Cloudy snow: Fit 1.339119 + 1.629655 / x
- Clear snow: RMS=0.003341, CVRMS=0.002478
BBR instrument LW channel unfiltering

Surface type independent parabolic fit

\[\alpha_{lw} = a + b \cdot L_{lw,th} + c \cdot L_{lw,th}^2 \]

RMS error on factor \(\sim 0.0008 \)
RMS error on radiance \(\sim 0.05 \) W/m\(^2\)/sr

Full description of the unfiltering method and results in the “ATBD”, including the subtraction of the “contaminations”.
BBR LW Flux Estimation

- BBR measure radiances $L(\theta, \phi) \ [Wm^{-2}sr^{-1}]$ at the TOA but flux is

$$F = \int_{\theta=0}^{\pi/2} \int_{\phi=0}^{2\pi} L(\theta, \phi)\cos(\theta)\sin(\theta)d\theta d\phi$$

- Need of Angular Dependency Models (R)

$$F = \frac{\pi L(\theta, \phi)}{R(\theta, \phi)}$$

- In the LW (from FLURB ESA Study 2014):

$$R(\theta) = a_0 + a_1 \cdot z_1 + a_2 \cdot z_2 + a_3 \cdot z_1^2 + a_4 \cdot z_1 \cdot z_2 + a_5 \cdot z_2^2$$

$$z_1 = BT_{10.8 \mu m}, \ z_2 = BT_{12 \mu m} - BT_{10.8 \mu m}$$

- Need a geophysical database to obtain a_i: Use of SITS Database

- BBR 3 views flux is estimated as:

$$F = \frac{1 - \alpha}{2} F_{fore} + \frac{1 - \alpha}{2} F_{aft} + \alpha F_{nadir}$$
Important to define Flux reference level for the collocation of the views to avoid parallax

The reference level will be placed at the altitude of the highest cloud in the footprint (using statistics on the MSI cloud top height product in nadir)
BBR LW Flux Estimation: Radiative Transfer database

SITS LibRadtran database improved for warm scenes (270)
 ► 12096 thermal (LW) simulations, 540 are clear sky
 ► Outputs at: 18 VZA: 0° to 85°, step 5°
 ► ASTER surface emission
 ► OPAC aerosol definition
 ► Standard atmospheric profiles + wv scaled
 ► Cloud properties from Yang parametrization
 ► LW sim: 2.5 to 100 μm (762 λ) + extended up to 500 μm
 ► Surface Temperature from profile + ΔT

SBDART database
 ► 4622 thermal (LW) simulations, only used clear sky ones (2311)
 ► Outputs at: 18 VZA: 0° to 85°, step 5°
 ► Atmospheric profiles from TIGR-3 database
 ► LW sim: 2.5 to 100 μm (431 λ) + extended up to 500 μm
 ► Emissivity generated randomly between 0.85 and 1
 ► Surface Temperature generated randomly with values close to the lowest in the atmospheric profile
BBR LW Flux Estimation: Radiative Transfer database

LibRadtran SITS DB + clear sky SBDART DB + improved SITS warm scenes

NADIR

OFF-NADIR
BBR LW Flux Estimation: best weighting of the 3 views?

- Study based on CERES TAT data, allowing to estimate the true flux (Direct Integration)
- Best weighing using real data: $\alpha \sim 1/3$
- 3D effects are important and the three views should be considered
BBR LW Flux Estimation: verification based on TAT data
SW radiance-to-flux conversion
(see detail in talk of Florian Tornow)

SW BMA-FLX algorithm is an ADM that employs a feed-forward back-propagation artificial neural network (ANN) technique trained with radiative fluxes from CERES instrument.

BBR inputs: BM-RAD
- BBR SW unfiltered radiances
- Illumination and viewing geometry

MSI inputs: M-NOM, M-CM, M-COP
- PSF-weighted MSI radiances/Tb over clear/cloudy pixels
- PSF-weighted CTH
- PSF-weighted cloud fraction

Aux. inputs: X-MET, IGBP, Alb. clim.
- Surface parameter descriptors

It outputs the 3 SW BBR TOA radiances co-registered at a reference level.

\[
\bar{F}_{SW,i}^j (\theta_0) = \frac{\pi L_{SW,i}^j (\theta_0, \phi)}{R_{SW,i}^j (\theta_0, \phi)}
\]
Summary

• Similitudes and differences of the BBR wrt current ERB instruments.
• Unfiltering and radiance-to-flux algorithms have been developed
• Currently under implementation in the ground segment, still room for scientific improvements
• The 10 W/m² instantaneous error is achieved in the LW for most (98.5%) of the 10x10km observations.

Thank you!