Tropical deep convection, upper tropospheric humidity and OLR: Recent insights from GERB

James Ingram and Helen Brindley
Imperial College London – NCEO
Motivation

What are the temporal and spatial scales of the upper tropospheric humidity response to deep convection over tropical Africa and what are the associated impacts on (clear-sky) OLR?

Zelinka and Hartmann, 2009 tropical Pacific, time composites centred on intense convection
Motivation

What are the temporal and spatial scales of the upper tropospheric humidity response to deep convection over tropical Africa and what are the associated impacts on (clear-sky) OLR?
Detecting deep convection

- Use simple 6.2-7.3 μm BTD threshold.
- Initial threshold estimates from RT modelling
- Tuned against co-located CloudSat classifications (2B-CLDCLASS (Sassen and Wang, 2008)) using ROC analysis
- Expect threshold variation with time of day and year
Detecting deep convection

- Initial analysis showed a high percentage of false alarms regardless of threshold chosen.

- Issue with anvil altostratus: contiguous with deep convection but not classified as part of system.

- Reclassification of contiguous altostratus within 1 cloud radii and depth > 5 km as ‘deep convection’.
Detecting deep convection

Example ROC analysis for June 2010 (night) using reclassified 2B-CLDCLASS data

Similar methodology applied to detect anvil cirrus based on 12.0-10.8 μm BTD and 2B-CLDCLASS-Lidar cirrus classification

<table>
<thead>
<tr>
<th>Month</th>
<th>June 2010</th>
<th>December 2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day (~1300 UTC)</td>
<td>Night (~0100 UTC)</td>
<td>Day (~1300 UTC)</td>
</tr>
<tr>
<td>6.2-7.3 μm threshold (>)</td>
<td>-9 K</td>
<td>-3 K</td>
</tr>
<tr>
<td>12.0-10.8 μm threshold (<)</td>
<td>-3 K</td>
<td>-1 K</td>
</tr>
</tbody>
</table>
Tracking individual events

Tracking algorithm is relatively simple, combining tests for:

Area overlap and centre of mass displacement (Williams and Houze, 1987)

and splitting or merging
Tracking individual events

Example of tracking two clouds that merge (June 6th 2010)
Size/frequency distribution

June 2010

December 2010
Geographical distribution

June

Relief (Berens, 2013)

December

Aridity (UNEP, 2015)
Estimating clear–sky Upper Tropospheric Humidity

\[a + bT B_{6.2} = \ln \left(\frac{UTH \times P'}{\cos \theta} \right) \]

Soden and Bretherton, (1993)
Clear-sky UTH patterns (medium sized clouds)

- Systematic reduction in UTH with distance from cloud
- Systematic increase in UTH with cloud lifetime
- Consistent pattern seen for all cloud size bins and times analysed
Clear-sky UTH and OLR response

Anomalies relative to value at t=0, medium cloud size-bin
Summary

Method

- Simple method developed to detect, track and quantify impact of deep convection on UTH and OLR over tropical Africa
- Evaluation of detection method indicated need to re-classify CloudSat 2B-CLDCLASS anvil altostratus as part of deep convective system if within 1 cloud radii and > 5 km thick
- Detections during June and December 2010 show expected seasonal and geographical patterns

UTH/OLR response

- Magnitude of clear-sky UTH response to deep convection increases with distance from cloud edge
- Temporal response shows an initial drying followed by moistening for all cloud size bins
- Timing of peak response lags that of most intense convection by between 30 and 120 minutes dependent on cloud size and spatial region considered
- Clear-sky OLR response strongly anti-correlated to UTH: largest perturbations (-4.7 W m$^{-2}$/1 % UTH increase) seen in December due to drier base state of atmosphere