Remote sensing of the surface latent heat flux

S. Dewitte - RMIB

What limits evaporation of water?

Evaporation of water causes surface cooling.

Used data

MSG LSA SAF data, March 2015

LSA parameters: FSWdown, albedo, FLWdown, LST (clearksy), BB emissivity -> net radiation Rnet

Monthly clear sky average diurnal cycle:

Rnet(h)=mean over clear sky days Rnet(d,h)

LST(h)=mean over clear sky days LST(d,h)

Empirical first order relation Rnet & LST

Rnet (h) = G(T(h)-To) + CdT(h)/dt

Interpretation

G(T(h)-To) = Turbulent atmospheric flux

CdT(h)/dt = Ground flux

Rnet (h) = G(T(h)-To) + CdT(h)/dt

Input measurements:

Rnet(h): Net radiation

T(h): Land Surface Temperature

Retrieved parameters:

To: equilibrium temperature

G: thermal conductance

C: thermal capacity

Fit results Southern Africa: G,C

Fit results Southern Africa: To,RMSE

Separation sensible and latent heat flux

- G(T(h)-To) = L + H
- Calibration = small desert L=0 H=Gmin(T(h)-To)
- General case H=Gmin(T(h)-To) L=(G-Gmin)*(T(h)-To)
- Validation = tropical rain forest
 Check (G-Gmin)*(T(h)-To) = latent heat for potential evaporation

Calibration Gmin over Namib desert

 $G(W/m^2K)$:

 $Gmin = 12 W/m^2K$

EF=(G-Gmin)/G

Validation: comparison with potential evapotranspiration

[Priestley, Taylor, 1972]:

 $\alpha_{PT} = EF/(\delta/(\delta+\gamma))$

Over rectangle:

Rel max α_{PT} =1.23 agrees well with expectation for potential EF

Conclusions

A remote sensing method for the retrieval of latent heat has been outlined based on the empirical first order relation between clear-sky net radiation and Land Surface Temperature.

Calibration of the sensible heat conductance is done over the Namib desert.

Validation is done over tropical rainforest.