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* |nthe absence of external radiative forcings,
global mean temperature (T) should be stable in
the long run
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* |nthe absence of external radiative forcings,
global mean temperature (T) should be stable in

the long run
* Why? Because of the ‘Planck Response’:
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What does the local relationship [N(6,®) vs. T(6,D)] look like?
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 What are the physical reasons for the mostly
positive local N(6,D) vs. T(6,D) relationship?

* If the local N(B8,D) vs. T(B,D) relationship is mostly
positive, how precisely does global T restore
equilibrium after a large unforced fluctuation?




Why is the local N(B’CD) VS. T(G,(D) AOGCM control runs
relationship mostly positive?

AOGCMs: N( a,¢) vs. T( o,0), (AVG =169)




Why is the local N(B’CD) VS. T(G,(D) AOGCM control runs
relationship mostly positive?

Components of N

Clear o, (AVG =0.5) CRE , (AVG =0.6)
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AOGCM control runs

Why is the local N(0,®D) vs. T(6,D)
relationship mostly positive?

* Due mostly to the Components of N

longwave water vapor Clear (AVG'OG) CRE , (AVG =0.6)
feedback over oceanic
regions with the highest
climatological T(6,D)

AOGCMs: N( a,¢) vs. T( a,qb), (AVG =1 9)

Clear w (AVG =-1)
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AOGCM control runs

Why is the local N(0,®D) vs. T(6,D)
relationship mostly positive?

* Planck Response Components of N

evident in the Clear,,
component elsewhere

AOGCMs: N( a,¢) vs. T( o,0), (AVG =169)




AOGCM control runs

Why is the local N(0,®D) vs. T(6,D)
relationship mostly positive?

e Due to the cloud Components of N

shortwave component in Clear . (AVG =0.6)
regions with oy B GG
intermediate to high
climatological T(6,D)

CRE , (AVG =0.6)




AOGCM control runs

Why is the local N(0,®D) vs. T(6,D)
relationship mostly positive?

e Due to the surface Components of N

shortwave component in
regions with climatological
T(0,D) near the freezing
point of water

AOGCMs: N( a,¢) vs. T( o,0), (AVG =169)




Why is the local N(B’CD) VS. T(G,(D) AOGCM control runs
relationship mostly positive?

Components of N

Clear o, (AVG =0.5) CRE , (AVG =0.6)
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Why is the local N(6,®) vs. T(6,D) CERES/ERA-|
relationship mostly positive?

Components of N

Clear - (AVG =0.5) CRE - (AVG =1.9)

Obs: N( a,¢) vs. T( o,¢), (AVG =1.4)6




 What are the physical reasons for the mostly
positive local N(6,D) vs. T(6,D) relationship?

* If the local N(B8,D) vs. T(B,D) relationship is mostly
positive, how precisely does global T restore
equilibrium after a large unforced fluctuation?




How precisely does global T restore AOGCM control runs
equilibrium after a large unforced fluctuation?

N( a,0) vs. T( a,0), (AVG =169)




How precisely does global T restore AOGCM control runs
equilibrium after a large unforced fluctuation?

Regression against global T




How precisely does global T restore AOGCM control runs
equilibrium after a large unforced fluctuation?

Regression against global T

N( a,0) vs. T( a,0), (AVG =169)

N (AVG =-0.8)




How precisely does global T restore AOGCM control runs
equilibrium after a large unforced fluctuation?

T : Regression against global T
 Positive T anomalies 8 g g

associated with El Nifio T(AVG =1)
events ey *

N( a,¢) Vs. T( a,¢), (AVG =1 9)




AOGCM control runs

How precisely does global T restore
equilibrium after a large unforced fluctuation?
Regression against global T

* Large horizontal
divergence T(AVG =1)
(convergence) of oy P P
atmospheric energy
transport over the
tropical Pacific (high
latitudes)

N( a,¢) Vs. T( a,¢), (AVG =1 9)




How precisely does global T restore AOGCM control runs

equilibrium after a large unforced fluctuation?
Regression against global T

T (AVG =1)

e Characteristic T(6,®D) vs.
T pattern with a
substantial amount of
warmth at high latitudes
where the temperature
anomaly can be easily
damped to space

N( a,0) vs. T( a,0), (AVG =1é9)




How precisely does global T restore AOGCM control runs
equilibrium after a large unforced fluctuation?

Regression against global T

e Characteristic T(6,®D) vs.
T pattern contains
anomalously cool T(6,D)
regions where locally
positive N(6,®D) vs. T(6,D)
relationship promotes
negative N(6,D)

T (AVG =1)

N( a,¢) Vs. T( a,¢), (AVG =1 9)




How precisely does global T restore AOGCM control runs
equilibrium after a large unforced fluctuation?
Regression against global T

T (AVG =1)

N( a,¢) Vs. T( a,¢), (AVG =1 9)




How precisely does global T restore CERES/ERA-I
equilibrium after a large unforced fluctuation?

Regression against global T
T (AVG =1)

 Obs: N(a,0) vs. T( a,¢), (AVG =1 .4)6




How precisely does global T restore AOGCM control runs
equilibrium after a large unforced fluctuation?
Regression against global T

T (AVG =1)

N( a,¢) Vs. T( a,¢), (AVG =1 9)




Is the characteristic T(0,®) vs. global T pattern AOGCM control runs
the whole story?

Regression against global T

T (AVG =1)

N( a,¢) Vs. T( a,¢), (AVG =1 9)




Is the characteristic T(0,®) vs. global T pattern AOGCM control runs
the whole story?

e Test this by multiplying Regression against global T

the ‘local feedback’ T(AVG =1)
relationship by the g
characteristic surface
temperature distribution
associated with global T
variability...

N( a,¢) Vs. T( a,¢), (AVG =1 9)




Is the characteristic T(0,®) vs. global T pattern AOGCM control runs
the whole story?

e Test this by multiplying Regression against global T

the ‘local feedback’ T(AVG =1)
relationship by the g
characteristic surface
temperature distribution
associated with global T
variability...

N( a,¢) Vs. T( a,¢), (AVG =1 9)




Is the characteristic T(0,®) vs. global T pattern AOGCM control runs
the whole story?

e Test this by multiplying Atmospheric
the ‘local feedback’ column

relationship by the _ TOA

characteristic surface
temperature distribution
associated with global T
variability...

Surface



Is the characteristic T(0,®) vs. global T pattern AOGCM control runs
the whole story?

e Test this by multiplying Atmospheric
the ‘local feedback’ column
relationship by the
characteristic surface
temperature distribution
associated with global T
variability...

TOA

A[T(6,0)]
AT

Surface



Is the characteristic T(0,®) vs.
the whole story?

e Test this by multiplying
the ‘local feedback’
relationship by the
characteristic surface
temperature distribution
associated with global T
variability...

global T pattern AOGCM control runs

Atmospheric
column
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Is the characteristic T(0,®) vs.
the whole story?

e Test this by multiplying
the ‘local feedback’
relationship by the
characteristic surface
temperature distribution
associated with global T
variability...

global T pattern AOGCM control runs

Atmospheric
column

A[N(86, 9)]

TOA
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AOGCM control runs

Is the characteristic T(0,®) vs. global T pattern

the whole story?
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Is the characteristic T(0,®) vs. global T pattern AOGCM control runs
the whole story?

e Test this by multiplying Atmospheric  IANCH)]

the ‘local feedback’ column
relationship by the eg
characteristic surface
temperature distribution
assoiiated with global T AINCS, 9] Stationary
. . 5 A[T(6,0)] ‘feedback’?
variability...
A[T(8,0)]
Surface

AIN(6,®)] _ AIN(E, )] A[T(6, 2)] PN

AT  A[T(8,0)] AT




Is the characteristic T(0,®) vs. global T pattern AOGCM control runs
the whole story?

e Test this by multiplying Regression against global T

the ‘local feedback’ T(AVG =1)
relationship by the g
characteristic surface
temperature distribution
associated with global T
variability...

N( a,¢) Vs. T( a,¢), (AVG =1 9)




Is the characteristic T(0,®) vs. global T pattern AOGCM control runs
the whole story?

e Test this by multiplying Regression against global T

the ‘local feedback’ T(AVG =1)
relationship by the g
characteristic surface
temperature distribution
associated with global T
variability...

N( a,¢) Vs. T( a,¢), (AVG =1 9)

N (AVG =1, 7)




Is the characteristic T(0,®) vs. global T pattern AOGCM control runs

the whole story?

e Test this by multiplying
the ‘local feedback’
relationship by the
characteristic surface
temperature distribution
associated with global T
variability...

N( a,¢) Vs. T( a,¢), (AVG =1 9)

Regression against global T

T (AVG =1)

Positive




Is the characteristic T(0,®) vs. global T pattern CERES/ERA-|
the whole story?

. Test this by multiplying Regression against global T
the ‘local feedback’ T (AVG =1)
relationship by the
characteristic surface
temperature distribution
associated with global T
variability...

Positive




Is the characteristic T(0,®) vs. global T pattern AOGCM control runs
the whole story?

e Test this by multiplying Regression against global T

the ‘local feedback’ T(AVG =1)
relationship by the g
characteristic surface
temperature distribution
associated with global T
variability...

N( a,¢) Vs. T( a,¢), (AVG =1 9)

N (AVG =1, 7)




Is the characteristic T(0,®) vs. global T pattern AOGCM control runs

the whole story?

Regression against global T

e Subtract to get the
contribution to N that is T(AVG =1)
NOT due to the i
characteristic T(6,®) vs.
T pattern

N( a,¢) Vs. T( a,¢), (AVG =1 9)

N (AVG =1, 7)




Why is the global N vs. T AOGCM control runs
relationship negative?

N (AVG =-2.5)




Why is the global N vs. T AOGCM control runs
relationship negative?

Components of N

= Clear , (AVG =0) CRE ,, (AVG =40.2)

N (AVG =-2.5)




Why is the global N vs. T AOGCM control runs

relationship negative?

* Enhanced Hadley Components of N

circulation and reversed = Clear . (AVG=0) CRE ,,, (AVG =0.2)
Walker Circulation cause o g

reduced water vapor and
cloud fraction/height
over large swaths of
tropics and subtropics

N (AVG =-2.5)




Why is the global N vs. T AOGCM control runs
relationship negative?

e Allows for much more Components of N

efficient release of LW = Clear , (AVG=0) CRE , (AVG =0.2)
radiation than would s ATV

otherwise be expected
RO ERICKO) RSN
pattern alone

N (AVG =-2.5)




Why is the global N vs. T AOGCM control runs
relationship negative?

Components of N

= Clear , (AVG =0) CRE ,, (AVG =40.2)

N (AVG =-2.5)




Why is the global Nvs. T CERES/ERA-|
relationship negative?

Components of N
Clear . (AVG =0.3) CRE , (AVG =-2.6)

N (AVG =-3.3)
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* Thelocal N(8, @) vs. T(6, @) relationship tends to be positive, despite the
Planck Response, because warm T(6, @) is accompanied by:

* Low surface albedo near sea ice margins and over high elevations
* Low cloud albedo over much of the middle and low-latitudes
 Large water-vapor greenhouse effect over the deep Indo-Pacific
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The local N(©, @) vs. T(0, @) relationship tends to be positive, despite the
Planck Response, because warm T(6, @) is accompanied by:

* Low surface albedo near sea ice margins and over high elevations
 Low cloud albedo over much of the middle and low-latitudes

 Large water-vapor greenhouse effect over the deep Indo-Pacific

Global T can restore equilibrium after a large fluctuation because warm
global T is accompanied by:

* Large divergence (convergence) of atmospheric energy transport over
the Tropical Pacific (high latitudes) which creates large positive T(8, @)
anomalies where they can be easily damped to space

* Large-scale atmospheric circulation changes drive cloud reduction and
atmospheric drying over large portions of the tropics and subtropics
which allows for greatly enhanced OLR



