Unforced Surface Air Temperature Variability and Its Contrasting Relationship with the Anomalous TOA Energy Flux at Local and Global Spatial Scales*

PATRICK T. BROWN AND WENHONG LI

Earth and Ocean Sciences, Nicholas School of the Environment, Duke University, Durham, North Carolina

JONATHAN H. JIANG AND HUI SU

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

(Manuscript received 29 May 2015, in final form 6 November 2015)
In the absence of external radiative forcings, global mean temperature (T) should be stable in the long run.
• In the absence of external radiative forcings, global mean temperature (T) should be stable in the long run
• Why? Because of the ‘Planck Response’:

\[\lambda_{Planck} = -4\sigma T_e^3 \approx 3.2 \text{ W m}^{-2} \text{ K}^{-1} \]
-2.4 (Wm$^{-2}$K$^{-1}$)
-0.8 (Wm$^{-2}$K$^{-1}$)

27 AOGCM control runs (5400 years)

CERES (14 years)
What does the local relationship \([N(\theta, \Phi) \text{ vs. } T(\theta, \Phi)]\) look like?
a) \bar{N} vs. \bar{T}

$-0.8 \, (Wm^{-2}K^{-1})$

$-2.4 \, (Wm^{-2}K^{-1})$

b) AOGCMs: $N(\alpha, \phi)$ vs. $T(\alpha, \phi)$, (AVG = 1.9)

c) Obs: $N(\alpha, \phi)$ vs. $T(\alpha, \phi)$, (AVG = 1.4)

d) $N(\alpha, \phi)$ vs. $T(\alpha, \phi)$, Zonal Mean
• What are the physical reasons for the mostly positive local $N(\theta, \Phi)$ vs. $T(\theta, \Phi)$ relationship?

• If the local $N(\theta, \Phi)$ vs. $T(\theta, \Phi)$ relationship is mostly positive, how precisely does global T restore equilibrium after a large unforced fluctuation?
Why is the local $N(\theta,\Phi)$ vs. $T(\theta,\Phi)$ relationship mostly positive?
Why is the local $N(\theta, \Phi)$ vs. $T(\theta, \Phi)$ relationship mostly positive?
Why is the local $N(\theta, \Phi) \text{ vs. } T(\theta, \Phi)$ relationship mostly positive?

- Due mostly to the longwave water vapor feedback over oceanic regions with the highest climatological $T(\theta, \Phi)$

AOGCM control runs
Why is the local $N(\theta,\Phi)$ vs. $T(\theta,\Phi)$ relationship mostly positive?

- Planck Response evident in the Clear$_{\text{LW}}$ component elsewhere.
Why is the local $N(\theta,\Phi)$ vs. $T(\theta,\Phi)$ relationship mostly positive?

- Due to the cloud shortwave component in regions with intermediate to high climatological $T(\theta,\Phi)$
Why is the local $N(\theta,\Phi)$ vs. $T(\theta,\Phi)$ relationship mostly positive?

- Due to the surface shortwave component in regions with climatological $T(\theta,\Phi)$ near the freezing point of water.
Why is the local $N(\theta,\Phi)$ vs. $T(\theta,\Phi)$ relationship mostly positive?

Components of N

AOGCM control runs
Why is the local $N(\theta,\Phi)$ vs. $T(\theta,\Phi)$ relationship mostly positive?
• What are the physical reasons for the mostly positive local $N(\theta, \Phi)$ vs. $T(\theta, \Phi)$ relationship?

• If the local $N(\theta, \Phi)$ vs. $T(\theta, \Phi)$ relationship is mostly positive, how precisely does global T restore equilibrium after a large unforced fluctuation?
How precisely does global T restore equilibrium after a large unforced fluctuation?

AOGCM control runs
How precisely does global T restore equilibrium after a large unforced fluctuation?
How precisely does global T restore equilibrium after a large unforced fluctuation?

Regression against global T

AOGCM control runs
How precisely does global T restore equilibrium after a large unforced fluctuation?

- Positive T anomalies associated with El Niño events
How precisely does global T restore equilibrium after a large unforced fluctuation?

- Large horizontal divergence (convergence) of atmospheric energy transport over the tropical Pacific (high latitudes)

Regression against global T
How precisely does global T restore equilibrium after a large unforced fluctuation?

- Characteristic $T(\theta,\Phi)$ vs. T pattern with a substantial amount of warmth at high latitudes where the temperature anomaly can be easily damped to space.
How precisely does global T restore equilibrium after a large unforced fluctuation?

- Characteristic $T(\theta, \Phi)$ vs. T pattern contains anomalously cool $T(\theta, \Phi)$ regions where locally positive $N(\theta, \Phi)$ vs. $T(\theta, \Phi)$ relationship promotes negative $N(\theta, \Phi)$
How precisely does global T restore equilibrium after a large unforced fluctuation?

Regression against global T

AOGCM control runs

Components of Clouds

Observations

Regression against global T

AOGCMs
How precisely does global T restore equilibrium after a large unforced fluctuation?

Regression against global T
How precisely does global T restore equilibrium after a large unforced fluctuation?

Regression against global T

AOGCM control runs
Is the characteristic $T(\theta,\Phi)$ vs. global T pattern the whole story?

Regression against global T
Is the characteristic $T(\theta, \Phi)$ vs. global T pattern the whole story?

- Test this by multiplying the ‘local feedback’ relationship by the characteristic surface temperature distribution associated with global T variability...

Regression against global T
Is the characteristic $T(\theta, \Phi)$ vs. global T pattern the whole story?

- Test this by multiplying the ‘local feedback’ relationship by the characteristic surface temperature distribution associated with global T variability...

Regression against global T
Is the characteristic $T(\theta, \Phi)$ vs. global T pattern the whole story?

- Test this by multiplying the ‘local feedback’ relationship by the characteristic surface temperature distribution associated with global T variability...
Is the characteristic \(T(\theta, \phi) \) vs. global \(T \) pattern the whole story?

- Test this by multiplying the ‘local feedback’ relationship by the characteristic surface temperature distribution associated with global \(T \) variability...
Is the characteristic $T(\theta, \Phi)$ vs. global T pattern the whole story?

- Test this by multiplying the ‘local feedback’ relationship by the characteristic surface temperature distribution associated with global T variability…

![Diagram of atmospheric column with equations for feedback]
Is the characteristic $T(\theta, \Phi)$ vs. global T pattern the whole story?

- Test this by multiplying the ‘local feedback’ relationship by the characteristic surface temperature distribution associated with global T variability...
Is the characteristic $T(\theta, \Phi)$ vs. global T pattern the whole story?

- Test this by multiplying the ‘local feedback’ relationship by the characteristic surface temperature distribution associated with global T variability...

AOGCM control runs

\[\Delta N(\theta, \phi) \]
\[\Delta T \]

\[\frac{\Delta N(\theta, \phi)}{\Delta [T(\theta, \phi)]} \]

\[\frac{\Delta [T(\theta, \phi)]}{\Delta T} \]

Atmospheric column

TOA

Stationary ‘feedback’?

Surface
Is the characteristic $T(\theta,\Phi)$ vs. global T pattern the whole story?

- Test this by multiplying the ‘local feedback’ relationship by the characteristic surface temperature distribution associated with global T variability...
Is the characteristic $T(\theta, \phi)$ vs. global T pattern the whole story?

- Test this by multiplying the ‘local feedback’ relationship by the characteristic surface temperature distribution associated with global T variability...

Regression against global T

AOGCM control runs
Is the characteristic \(T(\theta,\Phi) \) vs. global T pattern the whole story?

- Test this by multiplying the ‘local feedback’ relationship by the characteristic surface temperature distribution associated with global T variability…

Regression against global T

AOGCM control runs

Components of Clouds × Components of Clouds = ?

\[N(\alpha,\phi) \text{ vs. } T(\alpha,\phi), \text{ (AVG = 1.9)} \]

\[N(\text{AVG = -0.8}) \]

\[N(\text{AVG = 1.7}) \]
Is the characteristic $T(\theta, \Phi)$ vs. global T pattern the whole story?

- Test this by multiplying the ‘local feedback’ relationship by the characteristic surface temperature distribution associated with global T variability...

AOGCM control runs

Regression against global T

$N(\alpha, \phi) \times T(\alpha, \phi)$, $AVG = 1.9$

$= ?$

Negative

$N(\alpha, \phi)$, $AVG = -0.8$

Positive

$N(\alpha, \phi)$, $AVG = 1.7$
Is the characteristic $T(\theta,\Phi)$ vs. global T pattern the whole story?

- Test this by multiplying the ‘local feedback’ relationship by the characteristic surface temperature distribution associated with global T variability...

Regression against global T

- $N(\alpha,\phi) = \text{Positive}$
- $T(\text{AVG}=1)$
- \times
- $= ?$
- Negative
- $= ?$
- Positive
Is the characteristic $T(\theta,\Phi)$ vs. global T pattern the whole story?

- Test this by multiplying the ‘local feedback’ relationship by the characteristic surface temperature distribution associated with global T variability...

Regression against global T
Is the characteristic $T(\theta, \Phi)$ vs. global T pattern the whole story?

- Subtract to get the contribution to N that is NOT due to the characteristic $T(\theta, \Phi)$ vs. T pattern
Why is the global N vs. T relationship negative?
Why is the global N vs. T relationship negative?

Components of N

AOGCM control runs
Why is the global N vs. T relationship negative?

- Enhanced Hadley circulation and reversed Walker Circulation cause reduced water vapor and cloud fraction/height over large swaths of tropics and subtropics.
Why is the global N vs. T relationship negative?

- Allows for much more efficient release of LW radiation than would otherwise be expected from the $T(\theta, \Phi)$ vs. T pattern alone.
Why is the global N vs. T relationship negative?

Components of N

- Clear SW (AVG = 0)
- CRE SW (AVG = -0.2)
- Clear LW (AVG = -0.8)
- CRE LW (AVG = -1.4)
Why is the global N vs. T relationship negative?

Components of N

- **Clear SW (AVG = 0.3)**
- **CRE SW (AVG = -2.6)**
- **Clear LW (AVG = -1.1)**
- **CRE LW (AVG = 0.2)**
The local $N(\theta, \phi)$ vs. $T(\theta, \phi)$ relationship tends to be positive, despite the Planck Response, because warm $T(\theta, \phi)$ is accompanied by:

- Low surface albedo near sea ice margins and over high elevations
- Low cloud albedo over much of the middle and low-latitudes
- Large water-vapor greenhouse effect over the deep Indo-Pacific
The local $N(\theta, \phi)$ vs. $T(\theta, \phi)$ relationship tends to be positive, despite the Planck Response, because warm $T(\theta, \phi)$ is accompanied by:

- Low surface albedo near sea ice margins and over high elevations
- Low cloud albedo over much of the middle and low-latitudes
- Large water-vapor greenhouse effect over the deep Indo-Pacific

Global T can restore equilibrium after a large fluctuation because warm global T is accompanied by:

- Large divergence (convergence) of atmospheric energy transport over the Tropical Pacific (high latitudes) which creates large positive $T(\theta, \phi)$ anomalies where they can be easily damped to space
- Large-scale atmospheric circulation changes drive cloud reduction and atmospheric drying over large portions of the tropics and subtropics which allows for greatly enhanced OLR