Observation-Based Constraints On Atmospheric And Oceanic Cross-Equatorial Heat Transport

Norman G. Loeb¹, Hailan Wang², Anning Cheng², Seiji Kato¹, John T. Fasullo³, Kuan-Man Xu¹, Richard P. Allan⁴

¹NASA Langley Research Center, Hampton, VA
²Science Systems and Applications, Inc., Hampton, VA
³National Center for Atmospheric Research, Boulder, CO
⁴Department of Meteorology, University of Reading, Reading, UK

CERES Science Team Meeting, September 2, 2015, Seattle, WA
Introduction

- Large-scale tropical circulation and precipitation are constrained by the regional distribution of energy.

- The hemispheric asymmetry in energy determines the cross-equatorial heat transport in the atmosphere and ocean.

- This in turn constrains the mean position of the ITCZ.

- ITCZ and associated precipitation is poorly represented in climate models, likely because they do not correctly represent the regional distribution of energy.
CMIP5 Historical Coupled Simulations (1980-2004 Mean): Precip

mm/day
Objective

- Use CERES EBAF (TOA & SFC) Ed 2.8 and ERA-Interim to determine the implied atmospheric and ocean cross-equatorial heat transports.

- Further decompose the implied cross-equatorial heat transport into radiative and non-radiative contributions.

- Evaluate how climate models (CMIP5) represent the cross-equatorial heat transport.
Observations

- CERES EBAF Ed2.8 (TOA and SFC).
- ERA-Interim total energy tendency and column-integrated divergence of total energy \((c_p T + gz + Lq + k)\).
 - Version of ERA-Interim used obtained from NCAR: The climate data guide: ERA-Interim: Derived components.
 - In this version, a mass flux correction has been applied to the divergence terms.
- GPCP V2.2
CMIP5 Models Considered

<table>
<thead>
<tr>
<th>Model number</th>
<th>Model name</th>
<th>Country/model group</th>
<th>Resolution (Lon × Lat)</th>
<th>Rt-Fs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ACCESS1.0</td>
<td>Australia/ACCESS</td>
<td>1.875° × 1.25°</td>
<td>-0.38</td>
</tr>
<tr>
<td>2</td>
<td>ACCESS1.3</td>
<td></td>
<td>1.875° × 1.25°</td>
<td>-0.65</td>
</tr>
<tr>
<td>3</td>
<td>CCSM4</td>
<td>US/NCAR</td>
<td>1.25° × 0.9375°</td>
<td>-0.35</td>
</tr>
<tr>
<td>4</td>
<td>CESM1-BGC</td>
<td></td>
<td>1.25° × 0.9375°</td>
<td>-0.34</td>
</tr>
<tr>
<td>5</td>
<td>CESM1-FASTCHEM</td>
<td></td>
<td>1.25° × 0.9375°</td>
<td>-0.35</td>
</tr>
<tr>
<td>6</td>
<td>CESM1-WACCM</td>
<td></td>
<td>2.5° × 1.89°</td>
<td>-0.24</td>
</tr>
<tr>
<td>7</td>
<td>CSIRO-Mk3.6.0</td>
<td>Australia/CSIRO</td>
<td>1.875° × 1.86°</td>
<td>0.33</td>
</tr>
<tr>
<td>8</td>
<td>CanESM2</td>
<td>Canada</td>
<td>2.8125° × 2.79°</td>
<td>0.19</td>
</tr>
<tr>
<td>9</td>
<td>GFDL-CM3</td>
<td>US/GFDL</td>
<td>2.5° × 2.0°</td>
<td>-0.36</td>
</tr>
<tr>
<td>10</td>
<td>GFDL-ESM2G</td>
<td></td>
<td>2.5° × 2.01°</td>
<td>-0.55</td>
</tr>
<tr>
<td>11</td>
<td>GFDL-ESM2M</td>
<td></td>
<td>2.5° × 2.01°</td>
<td>-0.56</td>
</tr>
<tr>
<td>12</td>
<td>GISS-E2-H</td>
<td>US/GISS</td>
<td>2.5° × 2.0°</td>
<td>-0.42</td>
</tr>
<tr>
<td>13</td>
<td>GISS-E2-H-CC</td>
<td></td>
<td>2.5° × 2.0°</td>
<td>-0.40</td>
</tr>
<tr>
<td>14</td>
<td>GISS-E2-R</td>
<td></td>
<td>2.5° × 2.0°</td>
<td>-0.39</td>
</tr>
<tr>
<td>15</td>
<td>GISS-E2-R-CC</td>
<td></td>
<td>2.5° × 2.0°</td>
<td>-0.39</td>
</tr>
<tr>
<td>16</td>
<td>HadCM3</td>
<td>UK/Met Office</td>
<td>3.75° × 2.5°</td>
<td>-0.29</td>
</tr>
<tr>
<td>17</td>
<td>HadGEM2-CC</td>
<td></td>
<td>1.875° × 1.25°</td>
<td>-0.48</td>
</tr>
<tr>
<td>18</td>
<td>HadGEM2-ES</td>
<td></td>
<td>1.875° × 1.25°</td>
<td>-0.46</td>
</tr>
<tr>
<td>19</td>
<td>IPSL-CM5A-LR</td>
<td>France/IPSLS</td>
<td>3.75° × 1.89°</td>
<td>0.32</td>
</tr>
<tr>
<td>20</td>
<td>IPSL-CM5A-MR</td>
<td></td>
<td>2.5° × 1.27°</td>
<td>0.33</td>
</tr>
<tr>
<td>21</td>
<td>IPSL-CM5B-LR</td>
<td></td>
<td>3.75° × 1.89°</td>
<td>-0.59</td>
</tr>
<tr>
<td>22</td>
<td>MIROC4 h</td>
<td>Japan/MIROC</td>
<td>0.5625° × 0.56°</td>
<td>-0.50</td>
</tr>
<tr>
<td>23</td>
<td>MIROC5</td>
<td></td>
<td>1.40625° × 1.40°</td>
<td>0.24</td>
</tr>
<tr>
<td>24</td>
<td>MPI-ESM-LR</td>
<td>Germany/MPI</td>
<td>1.875° × 1.86°</td>
<td>0.09</td>
</tr>
<tr>
<td>25</td>
<td>MPI-ESM-MR</td>
<td></td>
<td>1.875° × 1.86°</td>
<td>0.21</td>
</tr>
<tr>
<td>26</td>
<td>MPI-ESM-P</td>
<td></td>
<td>1.875° × 1.86°</td>
<td>0.12</td>
</tr>
<tr>
<td>27</td>
<td>MRI-CGCM3</td>
<td>Japan/MRI</td>
<td>1.125° × 1.12°</td>
<td>-0.19</td>
</tr>
<tr>
<td>28</td>
<td>MRI-ESM1</td>
<td></td>
<td>1.125° × 1.12°</td>
<td>-0.20</td>
</tr>
<tr>
<td>29</td>
<td>bcc-csm1-1</td>
<td>China/BCC</td>
<td>2.8125° × 2.79°</td>
<td>-0.97</td>
</tr>
<tr>
<td>30</td>
<td>bcc-csm1-1-m</td>
<td></td>
<td>1.125° × 1.12°</td>
<td>-0.99</td>
</tr>
</tbody>
</table>
Atmospheric & Surface Energy Budgets from CERES and Reanalysis

\[\frac{\partial A_E}{\partial t} = R_T - F_S - \nabla . F_A \quad (1) \]

\[F_S = R_S + LE + S \quad (2) \]

\[F_A = \frac{1}{g} \int_0^{P_s} (h + k) \bar{u} dp \]

\[A_E = c_p T + g z + L q + k = h + k \]

\[\frac{\partial A_E}{\partial t} \& \nabla . F_A \Rightarrow \text{ERA-Interim} \]

\[R_T \& R_S \Rightarrow \text{CERES EBAF Ed2.8} \]

\[F_S \& (LE + S) \Rightarrow \text{Residual Terms in (1) \& (2)} \]

Global Mean

- \(R_T = 0.6 \text{ Wm}^{-2} \)
- \(\nabla . F_A = 0 \text{ Wm}^{-2} \)
- \(\frac{\partial A_E}{\partial t} = 0 \text{ Wm}^{-2} \)
- \(F_S = 0.6 \text{ Wm}^{-2} \)
- \(R_S = 109.2 \text{ Wm}^{-2} \)
- \(\text{LE} + S = -108.6 \text{ Wm}^{-2} \)
Implied Cross-Eq. Heat Transports in Atmos. & Ocean from Energetic Constraints

Southern Hemisphere

\[R_T \]
1.4 Wm\(^{-2}\)

\[\nabla \cdot F_A \]
-1.0 Wm\(^{-2}\)

\[\frac{\partial A_E}{\partial t} \]
0.03 Wm\(^{-2}\)

\[F_S \]
2.3 Wm\(^{-2}\)

0.44 PW

Northern Hemisphere

\[R_T \]
-0.20 Wm\(^{-2}\)

\[\nabla \cdot F_A \]
0.90 Wm\(^{-2}\)

\[\frac{\partial A_E}{\partial t} \]
0.0 Wm\(^{-2}\)

\[F_S \]
-1.1 Wm\(^{-2}\)

-0.24 PW

0.2 PW
Decomposition of Cross-Equatorial Heat Transport into Radiative and Combined Latent and Sensible Heat Flux Components

\[
\begin{align*}
\text{Atmosphere} & \\
AHT_{EQ} & = \frac{1}{2} \left(\Delta R_T - \Delta F_S - \Delta \frac{\partial A_E}{\partial t} \right) \\
OHT_{EQ} & = \frac{1}{2} \left(\Delta F_S - \Delta \frac{\partial O_E}{\partial t} \right)
\end{align*}
\]

\(\Delta \) denotes the SH minus NH difference.

\[
F_S = R_S + LE + S
\]

\[
AHT_{EQ} = \frac{1}{2} \left(\Delta R_A + \Delta Q_A - \Delta \frac{\partial A_E}{\partial t} \right) \\
OHT_{EQ} = \frac{1}{2} \left(\Delta R_S + \Delta Q_S - \Delta \frac{\partial O_E}{\partial t} \right)
\]

\[
R_A = R_T - R_S \\
Q_S = (LE + S) \\
Q_A = -Q_S
\]
Implied Cross-Eq. Heat Transports in Atmos. & Ocean from Energetic Constraints

Southern Hemisphere

- R_T: 1.4 Wm$^{-2}$
- R_A: -112 Wm$^{-2}$
- $(LE + S)$: 111 Wm$^{-2}$
- F_S: 2.3 Wm$^{-2}$

Northern Hemisphere

- R_T: -0.20 Wm$^{-2}$
- R_A: -106 Wm$^{-2}$
- $(LE + S)$: 107 Wm$^{-2}$
- F_S: -1.1 Wm$^{-2}$

Fluxes and Rates

- R_T: 0.2 PW
- R_A: -0.75 PW
- F_S: 0.51 PW
- R_S: 0.95 PW
SH minus NH difference in atmospheric LW Flux

(a) SH minus NH Atm LW Flux Diff (Wm^-2)

- Clear-Sky
- All-Sky
- CRE

SH minus NH difference in cloud fraction

(b) SH minus NH Cloud Fraction Diff

- < 3
- 3 - 5.7
- 5.7 - 10
- > 10

LW ATM cooling in NH dominates
LW ATM cooling in SH dominates
Conclusions

- The large-scale circulation in the tropics and position of the ITCZ are intricately linked with the large-scale distribution of the energy budget.

- CERES EBAF-TOA and SFC combined with ERA-I atmospheric total energy divergence enable a decomposition of cross-equatorial heat transport into radiative and combined latent and sensible heat flux components.

- This decomposition provides a powerful new observational constraint on large-scale energy budget that needs to be satisfied in order to make progress on double ITCZ problem.
Conclusions

- SH has a larger cloud fraction and a greater fraction of low clouds, while the NH has more high clouds. In addition, NH has a higher surface albedo, greater abundance of absorbing aerosols and precipitable water.

⇒ LW radiative cooling is more pronounced in the SH than the NH and SW radiative heating is greater in the NH.

⇒ Net atmospheric radiative effect is more cooling in the SH relative to NH, which implies a NH to SH cross-eq heat transport.

⇒ Surface-to-atmosphere combined latent and sensible heat transport is greater in SH than NH, which compensates somewhat for radiatively driven cross-eq heat transport.
Conclusions

- CMIP5 models that overestimate tropical precipitation in the SH:
 - overestimate net downward surface radiation in SH vs NH
 - overestimate combined latent and sensible heat flux in SH vs NH
 - underestimate atmospheric radiative cooling in the SH vs NH

⇒ Excessive heating of the SH atmosphere and anomalous SH to NH cross-equatorial heat transport

⇒ Ascending branch of Hadley circulation lies too far to the south (necessary to move excess heat from SH to NH).

⇒ Too much SH tropical precipitation.