The capabilities of lidar datasets for radiative heating rate and flux calculations

Tyler Thorsen; Qiang Fu
University of Washington

David Turner
NOAA/National Severe Storms Laboratory

Rob Newsom; Jennifer Comstock
Pacific Northwest National Laboratory

photo by J. Schmelzer / CC BY-NC-SA 2.0
Lidars and radiative fluxes

Vertical profiles of visible-wavelength extinction coefficients
Lidars and radiative fluxes

Vertical profiles of visible-wavelength extinction coefficients

- Synergy with cloud radar
 - Complementary sensitivities to cloud
 (radar: poorer sensitivity; lidar: attenuation)
 - For ice, radar+lidar \rightarrow particle size
 (e.g. Wang and Sassen 2002; Delanoe and Hogan 2008)

- Aerosol properties
A-train: CALIPSO

ARM: CloudSat MPL (micropulse lidar) MMCR (millimeter cloud radar)

• Both sets are large quantities of data, commonly used (separately)
Both sets are large quantities of data, commonly used (separately)

Compute cloud radiative effect using ARM and A-train radar+lidar observations over Darwin, Australia
Cloud radiative effect (Thorsen et al. 2013a)

- Up to 1.4 K/day difference
Cloud radiative effect (Thorsen et al. 2013a)

- Up to 1.4 K/day difference
- Mostly due to differences in lidar occurrence profiles: MPL detects much less cirrus than CALIPSO
 - Combination of complete attenuation and a poorer sensitivity
The elastic lidar equation

We are using extinction from these lidars BUT

- Single-channel elastic backscatter lidars don’t actually measure extinction

\[S_{\lambda_0}(z) \propto \beta_{p,\lambda_0}(z) \times \exp \left[- \int_0^z \alpha_{p,\lambda_0}(z') dz' \right] \]
The elastic lidar equation

We are using extinction from these lidars BUT

• Single-channel elastic backscatter lidars don’t actually measure extinction

\[S_{\lambda_0}(z) \propto \beta_{p,\lambda_0}(z) \times \exp \left[- \int_0^z \alpha_{p,\lambda_0}(z') dz' \right] \]

• Assume “lidar-ratio” profile: \(S_p(z) = \alpha_p(z)/\beta_p(z) \)
• The lidar ratio is not constant \(\rightarrow \) large errors in extinction
The ARM Raman lidar (RL)

- Measures an elastic signal and a Raman-scattered nitrogen signal
The ARM Raman lidar (RL)

- Measures an elastic signal and a Raman-scattered nitrogen signal
- Nitrogen signal is independent of particulate backscatter

\[S_{\lambda N_2}(z) \propto \exp \left[- \int_0^z \alpha_{p,\lambda_0}(z') \, dz' \right] \]
The ARM Raman lidar (RL)

- Measures an elastic signal and a Raman-scattered nitrogen signal
- Nitrogen signal is independent of particulate backscatter

\[S_{\lambda N_2}(z) \propto \exp \left[- \int_0^z \alpha_{p,\lambda_0}(z')\,dz' \right] \]

- Can directly-measure cloud/aerosol extinction and backscatter
The ARM Raman lidar (RL)

- Measures an elastic signal and a Raman-scattered nitrogen signal
- Nitrogen signal is independent of particulate backscatter
 \[S_{\lambda N_2}(z) \propto \exp \left[- \int_0^z \alpha_{p,\lambda_0}(z') dz' \right] \]
- Can directly-measure cloud/aerosol extinction and backscatter
- More sensitive than the ARM MPL; cirrus occurrence agrees well with CALIPSO; cloud/aerosol detection is unbiased by the solar background

(Thorsen et al. 2013b)
The ARM Raman lidar (RL)

- Measures an elastic signal and a Raman-scattered nitrogen signal
- Nitrogen signal is independent of particulate backscatter
 \[S_{\lambda N_2}(z) \propto \exp \left[- \int_0^z \alpha_p,\lambda_0(z')dz' \right] \]
- Can directly-measure cloud/aerosol extinction and backscatter
- More sensitive than the ARM MPL; cirrus occurrence agrees well with CALIPSO; cloud/aerosol detection is unbiased by the solar background (Thorsen et al. 2013b)
- Bonus: water vapor and temperature (Turner et al., 2002; Newsom et al., 2010)
RL-FEX (Feature detection and EXtinction retrieval)

- New automated retrieval algorithm for the ARM RL
- Comprehensively addresses the lidar retrieval problem

(Merger et al. 2015; Thorsen and Fu 2015)
RL-FEX (Feature detection and EXtinction retrieval)

- New automated retrieval algorithm for the ARM RL
- Comprehensively addresses the lidar retrieval problem
- RL-FEX makes possible statistical comparisons of CALIPSO cloud/aerosol properties to an advanced lidar
 - All previous work has focused on comparisons using case studies or small sample sizes

(Thorsen et al. 2015; Thorsen and Fu 2015)
RL-FEX (Feature detection and Extinction retrieval)

- New automated retrieval algorithm for the ARM RL
- Comprehensively addresses the lidar retrieval problem
- RL-FEX makes possible statistical comparisons of CALIPSO cloud/aerosol properties to an advanced lidar
 - All previous work has focused on comparisons using case studies or small sample sizes
- We now have a true climatology of cloud/aerosol extinction

(Thorsen et al. 2015; Thorsen and Fu 2015)
How does using extinction from an elastic lidar (e.g. CALIPSO/MPL) affect your radiative flux calculation?
How does using extinction from an elastic lidar (e.g. CALIPSO/MPL) affect your radiative flux calculation?

1. Calculate flux using RL-FEX best-estimate extinction
2. Calculate flux using elastic channel-only retrieved extinction (i.e. assumed lidar ratios)
 - TOA & surface aerosol/cloud radiative effect (i.e. subtract clear-sky flux)
 - Multiyear mean values
SGP site (Oklahoma): Raman vs. elastic extinction

- Aerosols: 25–30% difference
- Clouds: ≤ 15% difference, some cancellation in the net
SGP site (Oklahoma): Raman vs. elastic extinction

- Aerosols: 25–30% difference
- Clouds: ≤ 15% difference, some cancellation in the net
- This is a “lidar-biased” view (only ∼3-4 optical depths worth of particulates)
CALIPSO and Raman lidar aerosol occurrence
CALIPSO and Raman lidar aerosol occurrence

- **Transparent profiles only** (laser has fully penetrated the atmosphere)
- **CALIPSO detects much less aerosol than the RL**
• Is the aerosol missed by CALIPSO radiatively important?

1. Calculation using all aerosol detected by the RL
2. Calculation using RL data, but with aerosol randomly removed (multiple times) to force a CALIPSO-like occurrence profile (“RL degraded to CALIPSO’s sensitivity”)
• Is the aerosol missed by CALIPSO radiatively important?

1. Calculation using all aerosol detected by the RL
2. Calculation using RL data, but with aerosol randomly removed (multiple times) to force a CALIPSO-like occurrence profile ("RL degraded to CALIPSO’s sensitivity")

- Significant biases of ∼ 50–75%
Global estimates of shortwave direct aerosol effects at TOA
Global estimates of shortwave direct aerosol effects at TOA

- Passive sensors: -5 Wm^{-2} (mostly limited to clear-sky ocean)

 (Yu et al. 2006 and references therein)

- Active sensors: -0.6 to -1.9 Wm$^{-2}$ (using CALIPSO: all-sky, land+ocean, vertically-resolved)

 (Oikawa et al. 2013; Matus et al. 2015)

Are these estimates smaller due to CALIPSO's poor sensitivity? (causes a $\sim 70\%$ reduction at the two ARM sites)
Global estimates of shortwave direct aerosol effects at TOA

- Passive sensors: $-5 \ Wm^{-2}$ (mostly limited to clear-sky ocean)
 (Yu et al. 2006 and references therein)
- Active sensors: -0.6 to $-1.9 \ Wm^{-2}$ (using CALIPSO: all-sky, land+ocean, vertically-resolved)
 (Oikawa et al. 2013; Matus et al. 2015)
Global estimates of shortwave direct aerosol effects at TOA

- Passive sensors: $-5 \ \text{W}m^{-2}$ (mostly limited to clear-sky ocean)

 (Yu et al. 2006 and references therein)

- Active sensors: -0.6 to $-1.9 \ \text{W}m^{-2}$ (using CALIPSO: all-sky, land+ocean, vertically-resolved)

 (Oikawa et al. 2013; Matus et al. 2015)

Are these estimates smaller due to CALIPSO’s poor sensitivity?

(causes a $\sim 70\%$ reduction at the two ARM sites)
Summary

- CALIPSO+CloudSat better suited for heating rate calculations than MPL+MMCR due to the MPL’s lack of sensitivity.
- RL-FEX: new retrieval for the ARM Raman lidar. Provides directly-retrieved cloud/aerosol extinction coefficients.
- Assumptions needed to obtain extinction from elastic lidars results in $\sim 25\%$ biases in the inferred aerosol radiative effects and $\leq 15\%$ in the cloud radiative effects.
- A significant amount of aerosol goes undetected by CALIPSO
 - This lack of aerosol reduces the inferred aerosol radiative effects significantly (~ 50–75%)
Global estimates of shortwave direct aerosol effects at TOA

- Passive sensors: $-5 \ Wm^{-2}$ (mostly limited to clear-sky ocean)
 (Yu et al. 2006 and references therein)

- Active sensors: -0.6 to $-1.9 \ Wm^{-2}$ (using CALIPSO: all-sky, land+ocean, vertically-resolved)
 (Oikawa et al. 2013; Matus et al. 2015)
 - Clear-sky ocean: -2.6 to $-3.2 \ Wm^{-2}$
Radiative transfer model details

- NASA Fu-Liou, 2 streams
- Pressure / temperature / water vapor from radiosondes; standard profiles (MLS / MLW/ TROP) fill in above
- Ozone: standard profiles
- Surface albedo = 0.2
- Clouds: extinction from RL
 - Liquid: \(R_e = 8 \mu m \)
 - Ice: \(D_{ge} = 30 \mu m \)
- Aerosol
 - RL extinction at 355 nm
 - SGP: d’Almedia continental model
 - TWP: d’Almedia maritime model
Introduction

ARM vs. A-train

ARM Raman lidar

Raman vs. elastic extinction

CALIPSO aerosol detection

SGP

Day

Solid: transparent

Dashed: all

Night

TWP

Day

Solid: transparent

Dashed: all

Night
Introduction

ARM vs. A-train

ARM Raman lidar

Raman vs. elastic extinction

CALIPSO aerosol detection

(a) \(\delta \)

Height [km]

00 03 06 09 12 15 18 21

0 2 4 6 8 10 12 14

(b) \(\beta_{p, BE} \) [log\((km^{-1}sr^{-1})\)]

Height [km]

00 03 06 09 12 15 18 21

0 2 4 6 8 10 12 14

(c) \(K_{p,EN}^{'} \) & \(\bar{K}_{p,E} \) [sr]

Height [km]

00 03 06 09 12 15 18 21

0 2 4 6 8 10 12 14

(d) Feature classification

Hour [UTC]

00 03 06 09 12 15 18 21

0 2 4 6 8 10 12 14

Clr
Liq
Rn
Ice
HOI
Aer

(19/13)
Introduction

ARM vs. A-train

ARM Raman lidar

Raman vs. elastic extinction

CALIPSO aerosol detection

Day

(a)

RL: 2min/30m

RL: 9min/30m

RL: 15min/60m

CALIPSO

0.0 0.1 0.2 0.3 0.4

Height [km]

0 2 4 6 8 10 12 14 16 18 20

Cloud occurrence (transparent profiles)

Night

(b)

RL: 2min/30m

RL: 9min/30m

RL: 15min/60m

CALIPSO

0.0 0.1 0.2 0.3 0.4

Height [km]

0 2 4 6 8 10 12 14 16 18 20

Cloud occurrence (transparent profiles)