Constraining climate model ensemble projections using radiation process-oriented performance metrics

Noël C. Baker and Patrick C. Taylor
NASA Postdoctoral Program

CERES STM
May 6, 2015
Motivation: Climate influences Society

A location climate influences
- Agriculture
- Energy needs
- Water availability
- Infrastructure
- Building codes
Adaptation Planning is required

Climate projections are necessary.
The Intergovernmental Panel on Climate Change (IPCC) predicts that 21st-century global surface temperature change is likely to exceed 2°C.
IPCC prediction comes from ensemble of global climate models: CMIP5 (Coupled Model Intercomparison Project)

Models are averaged together to make climate predictions

21st-century temperature trend
(RCP 8.5 multi-model ensemble mean)
But models can have a large spread in predictions, and individual models can perform very differently from observations.

Global surface temperature anomaly, from 35 CMIP5 models.
The traditional **Multi-Model Ensemble (MME)** Approach uses the model mean to provide an improved “best estimate” forecast.
The multi-model ensemble generally performs better than individual models

Example: I^2 performance index (Reichler and Kim 2008)

Calculates aggregated model errors relative to NCEP/NCAR reanalyses for multiple climate variables
Some models perform better than others:

Can we use knowledge of model performance for a better way to combine model output?
The “intelligent ensemble” method for creating multi-model ensemble projections

Conventional method
- Climate model ensemble
 - Equal-weighted average
 - Climate projections

Proposed “intelligent” method
- Climate model ensemble
 - Performance evaluation
 - NASA satellite observations
 - Unequal-weighted average
 - “Intelligent” climate projections
Project goal:
determine future climate state
using observed current climate
and an ensemble of models

\[f(x_{\text{obs}}) = \Delta x \]

- Observed climate
- Perturbed climate state

“Perfect Model” approach is used to investigate relationships between climate state and the climate sensitivity to a perturbation.
Previous work has explored model performance and ensemble-weighting metrics

Several examples:
• Model subsets (USGCRP 2009)
• Performance metrics (Gleckler et al. 2008, Reichler and Kim 2008)
• Constrained projections (Tett et al. 2013; Giorgi and Mearns 2003)
• Weighted future trends (Boe et al. 2009)
• Bias correction (Baker and Huang 2012)

“The community would benefit from a larger set of proposed methods and metrics” (Knutti 2010)
New climate model performance metrics are tested: representative of energy budget processes

Radiation budget quantities
- Top-of-atmosphere (TOA) longwave (LW) and shortwave (SW) radiation fluxes
- Surface LW and SW radiation fluxes
- Surface temperature

Statistical tests
- F-test for equal variances
- Kolmogorov-Smirnov test for distribution similarity
- Earth Mover’s Distance (EMD): test of overlap in the CDF
- Local Variance: test variance of first difference time series (Baker and Taylor 2015)

New process-oriented metrics

δ TOA Radiation flux/δ Surface temperature : represent interannual-timescale radiative feedbacks
Model data: 32 CMIP5 models http://pcmdi9.llnl.gov/

- ‘Pre-Industrial Control’ simulations (monthly mean, 100 years) to create metric weights
- ‘RCP 8.5’ future simulations (monthly mean, 2081-2100 minus 2011-2030 to produce 21st-century trends)

Observational datasets:

NASA CERES EBAF-TOA and surface monthly global-mean (full data record: 03/2000 - 05/2014)
http://ceres.larc.nasa.gov/

NASA GISS Surface Temperature Analysis (GISTEMP)
http://data.giss.nasa.gov/gistemp/
Step 1: Test model quality with selected metrics

- OLR all-sky variance test
- OLR all-sky K-S test
- OLR all-sky local variance test
- OLR all-sky EMD value
- OLR cloudy-sky variance test
- OLR cloudy-sky K-S test
- OLR cloudy-sky local variance test
- OLR cloudy-sky EMD value
- OLR clear-sky variance test
- OLR clear-sky K-S test
- OLR clear-sky local variance test
- OLR clear-sky EMD value
- SW all-sky variance test
- SW all-sky K-S test
- SW all-sky local variance test
- SW all-sky EMD value
- SW cloudy-sky variance test
- SW cloudy-sky K-S test
- SW cloudy-sky local variance test
- SW cloudy-sky EMD value
- SW clear-sky variance test
- SW clear-sky K-S test
- SW clear-sky local variance test
- SW clear-sky EMD value
- Surface temperature variance test
- Surface temperature K-S test
- Surface temperature local variance test
- Surface temperature EMD value
- OLR/Ts variance test
- OLR(cloudy-sky)/Ts variance test
- OLR/Ts K-S test
- OLR(cloudy-sky)/Ts K-S test
- OLR Ts regression means test
- OLR(cloudy-sky) Ts regression means test
- SW/Ts variance test
- SW(cloudy-sky)/Ts variance test
- SW/Ts K-S test
- SW(cloudy-sky)/Ts K-S test
- SW Ts regression means test
- SW(cloudy-sky) Ts regression means test
- Metric mean

15
Step 2: Using skill-subset of models, apply “perfect model” approach (Räisänen and Palmer 2001)

Create set of potential “Earths” each with a continuous time series of observations.
Step 2: Using skill-subset of models, apply “perfect model” approach (Räisänen and Palmer 2001)

Create set of potential “Earths” each with a continuous time series of observations
For each “perfect model” (potential Earth), the performance metrics are tested on one simulation (Pre-Industrial Control), then applied to a different simulation (RCP 8.5 future trends), linking present-day quality with a future state.

Metric values are used as model weights to create unequal-weight ensemble mean trends.

<table>
<thead>
<tr>
<th>Model</th>
<th>Metric Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI-Control</td>
<td>Metric score: 0.8 (tested against perfect model)</td>
</tr>
<tr>
<td>Model 1</td>
<td>0.8</td>
</tr>
<tr>
<td>Model 2</td>
<td>0.3</td>
</tr>
<tr>
<td>“Perfect” model</td>
<td></td>
</tr>
</tbody>
</table>
For each “perfect model” (potential Earth), the performance metrics are tested on one simulation (Pre-Industrial Control), then applied to a different simulation (RCP 8.5 future trends), linking present-day quality with a future state.

Metric values are used as model weights to create unequal-weight ensemble mean trends.

Metric-weighted ensemble means which have the least error compared with the “perfect model” are considered the best-performing metrics.
Reichler and Kim (2008) I^2 performance index is used to compare metric quality

Metrics which perform well indicate a physical link between present-day model quality and reliability of projected trends.

Best-performing metrics:
- 32 OLR(cloudy-sky)/Ts K-S test
- 24 SW clear-sky EMD value
- 31 OLR/Ts K-S test

Worst-performing metrics:
- 7 OLR cloudy-sky local variance test
- 17 SW cloudy-sky variance test
- 15 SW all-sky local variance test

I^2 performance index value: mean across all “perfect model” iterations

Better performance:
Less error
Step 3: Using best-performing metric, create new “intelligent ensemble” projections

Use metric values as model weights to create unequal-weighted mean projections
Results: new 21st-century projections (surface temperature)

Global-mean surface temperature trend: 3 °C (0.1 °C higher than the traditional equal-weight MME)

The “Intelligent Ensemble” predicts about 10% higher regional surface temperature increases than MME

Contours are shaded only where the difference is statistically significant
Results: new 21st-century projections (precipitation)

"Intelligent" ensemble mean precipitation trend (cm/year)

The “Intelligent Ensemble” predicts more intense precipitation increases in the tropics, especially in the South Pacific Convergence Zone (SPCZ).

Difference between "Intelligent" and Equal-weight ensemble means (cm/year)

Contours are shaded only where the difference is statistically significant.
Results: new 21st-century projections (surface downward SW radiation)

"Intelligent" ensemble mean surface shortwave radiation trend (W/m²)

Higher surface radiation: less clouds

The “Intelligent Ensemble” predicts 10-20% less clouds than MME over certain land areas, especially in midlatitude regions

Contours are shaded only where the difference is statistically significant
Results: new 21st-century projections (regional-mean weights)

"Intelligent" ensemble mean temperature trend (°C)

Regional-mean weights can give very different predictions: the US-mean best-performing metric predicts less intense warming than the MME

Predicted warming: 3.9 °C (0.2 °C less than MME)

Difference between "Intelligent" and Equal-weight ensemble means (°C)

Stippling indicates where the difference is statistically significant
Results: 21st-century “Intelligent” projections (regional weights)

"Intelligent" ensemble mean precipitation trend (cm/year)

Difference between "Intelligent" and Equal-weight ensemble means (cm/year)
Conclusions

This project demonstrates:

- **New climate model performance metrics** related to radiation processes are tested on the CMIP5 archive
- **Present-day model skill is linked to quality of future projections**

The results are:

- **New “intelligent ensemble” projections** are created and compared with traditional MME projections
- For global-mean metrics, “intelligent ensemble” projections of large-scale patterns remain similar, but intensity of predicted surface temperature, precipitation, and surface radiation increase is **10-20% higher than the MME**
- Regional-mean metrics can produce very different projections: the **US-mean projected warming is 3.9 °C** (0.2 °C less than MME)