What we can learn about ECS from short-term climate variations

A. E. Dessler
Dept. of Atmospheric Sciences
Texas A&M University
\[\Delta R_{\text{total}} - \Delta F = + \lambda_{\text{total}} \Delta T \]
\[\Delta R_{\text{total}} - \Delta F = + \lambda_{\text{total}} \Delta T \]

CERES

MERRA

climate sensitivity
Global, monthly avg., 2000-2014

\[\lambda_{\text{total}} = -1.08 \pm 0.89 \text{ W/m}^2/\text{K} \]
Global, monthly avg., 2000-2014

\[\lambda_{\text{total}} = -1.08 \pm 0.89 \text{ W/m}^2\text{K} \]

due to short-term variations
$\lambda_{total} = -1.23 \pm 0.60 \text{ W/m}^2/\text{K}$
\lambda_{\text{total}} = -1.23 \pm 0.60 \text{ W/m}^2/\text{K} \quad \text{ECS} = 3.0 \pm 1.4 \text{ K}
\(\lambda_{\text{total}} = -1.23 \pm 0.60 \text{ W/m}^2\text{/K} \quad \text{ECS} = 3.0 \pm 1.4 \text{ K} \)

- **doesn’t** require estimates of forcing or OHC
- **does** require model-derived relation between short- and long-term \(\lambda_{\text{total}} \)
\[\Delta R_{\text{total}} = \Delta F + \lambda_{\text{total}} \Delta T \]
\[\Delta R_{\text{total}} = \Delta F + \lambda_{\text{total}} \Delta T \]

\[\Delta R_{\text{temp}} + \Delta R_{\text{wv}} + \Delta R_{\text{clouds}} + \ldots \]

Estimate \(\Delta R_x \) using radiative kernels
Regress ΔR_x vs. ΔT_s

$x = \text{Planck, lapse rate, cloud, etc.}$
Regress ΔR_x vs. ΔT_s

$x = \text{Planck, lapse rate, cloud, etc.}$

Slope = feedback λ_x (W/m2/K)
\[\Delta R_{\text{total}} = \Delta F + \lambda_{\text{total}} \Delta T \]

\[\Delta R_{\text{temp}} + \Delta R_{\text{wv}} + \Delta R_{\text{clouds}} + \ldots \]

Estimate \(\Delta R_x \) using radiative kernels

\[\lambda_{\text{total}} = \lambda_{\text{temp}} + \lambda_{\text{wv}} + \lambda_{\text{clouds}} + \ldots \]
\[\Delta R_{\text{total}} = \Delta F + \lambda_{\text{total}} \Delta T \]

\[\Delta R_{\text{temp}} + \Delta R_{\text{wv}} + \Delta R_{\text{clouds}} + \ldots \]

Estimate \(\Delta R_x \) using radiative kernels

\[\lambda_{\text{total}} = \lambda_{\text{temp}} + \lambda_{\text{wv}} + \lambda_{\text{clouds}} + \ldots \]

examine \(\lambda_{\text{total}} \) budget for in control and RCP8.5 models & obs.
Feedbacks

• Held and Shell decomposition
 [J. Climate, 2012]
Feedbacks

• *Held and Shell* decomposition [J. Climate, 2012]
• λ_x is change in TOA flux (per degree) due to:
Feedbacks

• *Held and Shell* decomposition [J. Climate, 2012]

• λ_x is change in TOA flux (per degree) due to:
 – Planck: uniform warming of surface and atmosphere, *with specific humidity changing to keep relative humidity constant*
Feedbacks

• *Held and Shell* decomposition [J. Climate, 2012]

• λ_x is change in TOA flux (per degree) due to:
 – Planck: uniform warming of surface and atmosphere, *with specific humidity changing to keep relative humidity constant*
 – Lapse-rate: differential warming of the surface and atmosphere, *constant RH*
Feedbacks

• *Held and Shell* decomposition [J. Climate, 2012]

• λ_x is change in TOA flux (per degree) due to:
 – Planck: uniform warming of surface and atmosphere, *with specific humidity changing to keep relative humidity constant*
 – Lapse-rate: differential warming of the surface and atmosphere, *constant RH*
 – ΔRH: change in RH
Feedbacks

• *Held and Shell* decomposition [J. Climate, 2012]

• \(\lambda_x \) is change in TOA flux (per degree) due to:
 – Planck: uniform warming of surface and atmosphere, *with specific humidity changing to keep relative humidity constant*
 – Lapse-rate: differential warming of the surface and atmosphere, *constant RH*
 – \(\Delta \text{RH} \): change in RH
 – albedo & clouds: change due to changing surface albedo and clouds
(non-cloud) feedbacks from control runs

Error bars on models are 95% confidence intervals.
(non-cloud) feedbacks from control runs

error bars on models are 95% confidence intervals
error bars on ensemble avg. are 2 std. dev.
error bars on models are 95% confidence intervals
error bars on ensemble avg. are 2 std. dev.
1. Agreement between control runs and MERRA obs. gives us confidence
1. Agreement between control runs and MERRA obs. gives us confidence

2. Planck feedback is set by pattern of surface warming; we should have high confidence in RCP8.5 models
2. Planck feedback is set by pattern of surface warming; we should have high confidence in RCP8.5 models

3. RH is roughly constant, so feedback is expected to be near zero

1. Agreement between control runs and MERRA obs. gives us confidence
1. Agreement between control runs and MERRA obs. gives us confidence

2. Planck feedback is set by pattern of surface warming; we should have high confidence in RCP8.5 models

3. RH is roughly constant, so feedback is expected to be near zero

4. Temperature and WV effects cancel; this leads to a small feedback
1. Agreement between control runs and MERRA obs. gives us confidence

2. Planck feedback is set by pattern of surface warming; we should have high confidence in RCP8.5 models

3. RH is roughly constant, so feedback is expected to be near zero

4. Temperature and WV effects cancel; this leads to a small feedback

5. Ice melts at 0°C; feedback should be positive
1. Agreement between control runs and MERRA obs. gives us confidence.

2. Planck feedback is set by pattern of surface warming; we should have high confidence in RCP8.5 models.

3. RH is roughly constant, so feedback is expected to be near zero.

4. Temperature and WV effects cancel; this leads to a small feedback.

5. Ice melts at 0°C; feedback should be positive.

We should have confidence in models’ ability to simulate these feedbacks in response to long-term warming.
• Planck+LR+RH+albedo = Fixed-cloud λ_{total}
• RCP8.5 $\lambda_{\text{total, fixed-cloud}} = -1.87 \pm 0.20$ W/m2/K
• translates to ECS of 1.8-2.2°C $\approx 2°C$
• clouds add on to this …
Chen Zhou et al., in prep.
cloud feedback

RCP8.5 λ_{cloud} (W/m2/K)

control λ_{cloud} (W/m2/K)
• good agreement between ensemble avg. of control models and observations of λ_{cloud}.

Cloud Feedback

![Graph showing relationship between RCP8.5 λ_{cloud} (W/m^2/K) and control λ_{cloud} (W/m^2/K). The graph displays a scatter plot with black dots and a red cross indicating a point of interest.]
• good agreement between ensemble avg. of control models and observations of λ_{cloud}

cloud feedback

• given that, hard to imagine that the models are completely wrong on the cloud feedback
• good agreement between ensemble avg. of control models and observations of λ_{cloud}

cloud feedback

• given that, hard to imagine that the models are completely wrong on the cloud feedback

• arguments exist why individual elements of cloud feedback should be positive
• good agreement between ensemble avg. of control models and observations of λ_{cloud}

• given that, hard to imagine that the models are completely wrong on the cloud feedback

• arguments exist why individual elements of cloud feedback should be positive

• long-term cloud feedback very likely positive; best estimate $\approx 0.7 \text{ W/m}^2/\text{K}$
Back of envelope calculation
Back of envelope calculation

\[\lambda_{\text{total, fixed-cloud}} = -1.87 \pm 0.20 \text{ W/m}^2/\text{K} \]
Back of envelope calculation

- $\lambda_{\text{total, fixed-cloud}} = -1.87 \pm 0.20 \text{ W/m}^2/\text{K}$
- translates to ECS of 1.8-2.2°C
Back of envelope calculation

- $\lambda_{\text{total, fixed-cloud}} = -1.87 \pm 0.20 \text{ W/m}^2/\text{K}$
- translates to ECS of 1.8-2.2°C
- $\lambda_{\text{total}} = \lambda_{\text{total, fixed cloud}} + \lambda_{\text{cloud}}$
Back of envelope calculation

- $\lambda_{\text{total, fixed-cloud}} = -1.87 \pm 0.20 \, \text{W/m}^2/\text{K}$
- Translates to ECS of 1.8-2.2°C
- $\lambda_{\text{total}} = \lambda_{\text{total, fixed cloud}} + \lambda_{\text{cloud}}$
- If $\lambda_{\text{cloud}} = +0.7 \, \text{W/m}^2/\text{K}$, then ECS $\approx 3.5 \pm 1.6^\circ\text{C}$
Back of envelope calculation

- \(\lambda_{\text{total, fixed-cloud}} = -1.87 \pm 0.20 \ \text{W/m}^2/\text{K} \)
- translates to ECS of 1.8-2.2°C
- \(\lambda_{\text{total}} = \lambda_{\text{total, fixed cloud}} + \lambda_{\text{cloud}} \)
- if \(\lambda_{\text{cloud}} = +0.7 \ \text{W/m}^2/\text{K} \), then ECS \(\approx 3.5 \pm 1.6°C \)
- if \(\lambda_{\text{cloud}} > 0 \ \text{W/m}^2/\text{K} \), then ECS > 2°C
Back of envelope calculation

- $\lambda_{total, fixed\text{-}cloud} = -1.87 \pm 0.20 \text{ W/m}^2\text{/K}$
- translates to ECS of 1.8-2.2°C
- $\lambda_{total} = \lambda_{total, fixed \ cloud} + \lambda_{cloud}$
- if $\lambda_{cloud} = +0.7 \text{ W/m}^2\text{/K}$, then ECS $\approx 3.5 \pm 1.6°C$
- if $\lambda_{cloud} > 0 \text{ W/m}^2\text{/K}$, then ECS $> 2°C$

This is at least “likely” and perhaps “very likely”
Conclusions

• analysis of CERES TOA flux & models implies ECS of 3.0±1.4°C (very likely range)

• With fixed clouds, we can have high confidence in ECS of 1.8-2.2°C

• Evidence of positive cloud feedback is at least _likely_, suggesting in turn that ECS > 2°C is also at least _likely_
Fig. 1. Scatterplot of the temperature (ΔR_T), water vapor (ΔR_v), albedo (ΔR_{alb}), and cloud (ΔR_{cloud}) flux anomalies vs surface temperature anomaly in the observations (using the ERA-Interim reanalysis). Also shown are a linear fit to the data and the 95% confidence intervals.

Dessler, J. Climate, 2013
Fig. 3. The zonal average temperature (bottom curves) and water vapor feedbacks (top curves). Observations are the solid lines (black is ERA-Interim and red is MERRA) and the models are dashed (black dashed is the control ensemble and red dashed is the A1B ensemble). The shading indicates one standard deviation about the average of the control ensemble. Error bars indicate the 2σ uncertainty of the fit for the ERA-Interim calculation at selected latitudes.
FIG. 4. The zonal average Planck–RH, lapse-rate–RH, and ΔRH feedbacks (these are from an alternative decomposition of the feedbacks in which the Planck and lapse-rate feedbacks also include changes in water vapor needed to maintain constant RH). Observations are the solid lines (black is ERA-Interim and red is MERRA) and the models are dashed (black dashed is the control ensemble and red dashed is the A1B ensemble). The shading indicates one standard deviation about the average of the control ensemble. Error bars indicate the 2σ uncertainty of the fit for the ERA-Interim calculation at selected latitudes.
\[\lambda_{\text{total}} = -1.06 \pm 0.49 \text{ W/m}^2/\text{K} \]
\[\lambda_{\text{total}} = -1.06 \pm 0.49 \text{ W/m}^2/\text{K} \quad \text{ECS} = 3.5 \pm 1.6 \text{ K} \]