

Status of VIIRS On-orbit Calibration

Jack Xiong¹, Changyong Cao², Vincent Chiang³, Boryana Efremova³, Jon Fulbright³, Ning Lei³, and Zhipeng Wang³ 1. NASA GSFC; 2. NOAA NESDIS; 3. Sigma Space Corp.

Acknowledgements:

VIIRS Characterization Support Team (VCST), NASA GSFC S-NPP/JPSS VIIRS SDR Team

CERES Science Team Meeting, NASA LaRC, Hampton, VA, April 22-24, 2014

Outline

- Background
- On-orbit Calibration and Characterization
- Performance
- Status of VIIRS SDR and LUTs
- Summary

Background

Visible Infrared Imaging Radiometer Suite (VIIRS)

- Key instrument on S-NPP and future JPSS satellites
 - S-NPP launched on October 28, 2011
 - JPSS-1 launch in 2017
 - Sensor ambient phase 1&2 completed
 - Sensor TVAC testing in July, 2014

• Strong MODIS heritage

- Spectral band selection
- On-board calibrators
- Operation and calibration
 - Strategies for planning/scheduling
 - Data analysis methodologies / tools

S-NPP VIIRS provides linkage btw EOS (MODIS) and future JPSS (VIIRS) and extends long-term data records for studies for the Earth's land, oceans, and atmosphere

VIIRS Spectral Bands

			1				
		HSR	Range	MODIS Band(s)	Nadir HSR (m)	Spectral Range (um)	VIIRS Band
1 DNB	\rightarrow					0.500 - 0.900	DNB
		1000	0.405 - 0.420	8	750	0.402 - 0.422	M1
		1000	0.438 - 0.448	9	750	0.436 - 0.454	M2
		500 1000	0.459 - 0.479 0.483 - 0.493	3 10	750	0.478 - 0.498	М3
		500 1000	0.545 - 0.565 0.546 - 0.556	4 or 12	750	0.545 - 0.565	M4
		250	0.620 - 0.670	1	375	0.600 - 0.680	l1
14 RSB		1000 1000	0.662 - 0.672 0.673 - 0.683	13 or 14	750	0.662 - 0.682	M5
		1000	0.743 - 0.753	15	750	0.739 - 0.754	M6
(0.4-2.3 μm)		250	0.841 - 0.876	2	375	0.846 - 0.885	12
		1000 250	0.862 - 0.877 0.841 - 0.876	16 or 2	750	0.846 - 0.885	M7
		500	SAME	5	750	1.230 - 1.250	M8
		1000	1.360 - 1.390	26	750	1.371 - 1.386	M9
		500	1.628 - 1.652	6	375	1.580 - 1.640	13
Dual Gain Bands		500	1.628 - 1.652	6	750	1.580 - 1.640	M10
NA1 NAE NA7 NA1'		500	2.105 - 2.155	7	750	2.225 - 2.275	M11
M1-M5, M7, M12		1000	3.660 - 3.840	20	375	3.550 - 3.930	14
		1000	SAME	20	750	3.660 - 3.840	M12
		1000 1000	3.929 - 3.989 3.929 - 3.989	21 or 22	750	3.973 - 4.128	M13
• 7 TEB		1000	SAME	29	750	8.400 - 8.700	M14
(3.7-12 μm)		1000	10.780 - 11.280	31	750	10.263 - 11.263	M15
		1000 1000	10.780 - 11.280 11.770 - 12.270	31 or 32	375	10.500 - 12.400	15
		1000	11.770 - 12.270	32	750	11.538 - 12.488	M16

16 Moderate (radiometric) bands, 5 Imaging bands, 1 DNB

VIIRS On-board Calibrators (MODIS Heritage)

VIIRS On-orbit Calibration and Characterization

On-orbit Calibration Methodologies:

- Solar Calibration (RSB)
 - Quadratic calibration algorithm
 - Linear calibration coefficients derived/updated from SD observations
 - SD degradation tracked by SDSM

• Lunar Calibration (RSB)

- Regularly scheduled at the "same" phase angles
- Observed through instrument SV port with a data sector rotation
- Implemented via S/C roll maneuvers (some constraints)
- Referenced to the ROLO model (USGS)

• BB Calibration (TEB)

- Quadratic calibration algorithm
- Linear calibration coefficients derived from BB observations

Calibration Activities

• SD and SDSM

- SD calibration every orbit (no scheduling is needed)
- SDSM currently scheduled for daily operation (to be reduced to 3 SDSM operations each week)

Lunar Calibration

- Regularly scheduled via S/C roll maneuvers (8-9 time / year)

BB Calibration

- Nominally controlled at 292 K (no scheduling is needed)
- Periodic warm-up and cool-down (scheduled on a quarterly basis)

Calibration Maneuvers

- Pitch (during intensive CAL/VAL phase) characterize TEB RVS
- Yaw (during intensive CAL/VAL phase) characterize SD and SDSM screen
- Roll for lunar calibration

On-orbit Performance

Instrument and On-board Calibrators

- Key Telemetry (Instrument Temperatures)
- SD Degradation
- BB Stability

• Changes in Spectral Band Response

- Reflective Solar Bands (RSB)
 - Modulated RSR and impact
- Thermal Emissive Bands (TEB)
- Detector SNR and NEdT

Instrument Temperatures

Vertical lines: SC or sensor anomalies and resets

Telemetry: Half Angle Mirror Sensor Cavity Rotating Telescope BB Shield Opt. & Mech. Module Electronics

Instrument temperatures have been very stable

SD Degradation

VIIRS SD Degradation (As of April 2014)

Shorter wavelength: larger degradation

VIIRS has no SD door A-MODIS SD door is closed when no calibration is scheduled T-MODIS SD door fixed at open since July 2003

BB Stability

Short-term stability (scan-by-scan T_{BB})

- Orbital variations of individual thermistors up to 40mK
- Variations in average temperature ~ 20mK
- Temperature difference between individual thermistors up to 60mK
- BB uniformity meets the requirement with standard deviation less than 30mK

Long-term trend of daily-averaged T_{BB}

- Stable to within a few mK.
- ~15mK offsets were due to the use of different T_{BB} settings.

Changes in Spectral Band Response (RSB)

SD and lunar calibration made at the same angle of incidence (AOI)

Large changes in NIR/SWIR response

Noticeable SD and Lunar calibration seasonal difference in VIS (M1-M3)

Impact of λ -dependent Changes in Detector Response

Impact of λ -dependent Changes in Detector Response

Modulated RSR should be applied to both solar and lunar calibration

Remaining issues:

- (1) lunar model uncertainty (to be investigated)
- (2) solar vector calculation error (in IDPS common geolocation library)

Changes in Spectral Band Response (TEB)

The discontinuities in the F-factor are coincident with SC maneuvers and anomalies during which the cold FPA temperatures changed

15

Band	I4	I5	M12	M13	M14	M15	M16
Average F-factor: 03 26 2012	1.0105	1.0040	1.0035	1.0070	0.9946	1.0056	1.0102
Average F-factor: 03 16 2014	1.0135	1.0106	1.0068	1.0092	0.9960	1.0065	1.0119
Trend [%]	0.30	0.65	0.33	0.21	0.14	0.09	0.18

TEB Detector Short-term Stability

Detector responses (F-factors) show small orbital variations: ±0.2% or less for scan-by-scan ±0.1% or less for granule average

F-factor orbital variations correlate with T_{BB} variations

+M13

1.006

1.004

1.002

1.000

764.85

F-factor

. ▼M15

764.95

Days since launch

▲M16

765.00

Orbits: 10853, 10854,

Scan-by-scan (HAM-A)

Granule average (HAM-A)

* For clarity the F-factors are shifted.

764.90

Detector SNR (RSB) and NEdT (TEB)

RSB SNR* > 1: performance better than specified requirements TEB NEdT* < 1: performance better than specified requirements

Status of VIIRS SDR and LUTs

- IDPS VIIRS SDR Code/LUTs (radiometric)
 - 18 code versions post launch; numerous LUT updates.
 - Improved LUT update strategy (on demand -> weekly -> automated).
- VIIRS SDR Cal/Val Maturity
 - Beta review: April 5, 2012
 - Provisional review: October 24, 2012
 - Validated review: December 19, 2013

Improved SD BRF and screen transmission and SDSM screen transmission LUT Moon in space view algorithm (RSB) Modulate relative spectral response (RSR) RSB auto-calibration in SDR Solar vector error correction to be implemented

Status of VIIRS SDR Code/LUTs

- NASA Land PEATE SDR Code/LUTs and Data Reprocess (C1.0 and C1.1)
 - Enabling independent data quality assessment and validation, and improvements
 - 13 sets of LUTs for VISNIR/SWIR and DNB delivered to Land PEATE for SDR/EDR assessment and data reprocess.
 - Jan 31, 2013: LUTs from Jan 2012 to Jan 2013 generated using IDPS algorithm Mx6.3 but <u>with smoothed functions to remove outliers</u>.
 - Nov 13, 2013: LUTs from Jan 2012 to Oct 2013 generated with calibration improvements based on Mx6.4, including <u>SD/SDSM screen transmission, SD</u> <u>BRDF, RTA mirrors degradation model, modulated RSRs, and smoothed fitting</u> <u>functions</u>.
 - Mar 12, 2014: LUTs from Jan 2012 to Nov 2013 generated with "best" sensor characterization improvements based on Mx7.2 algorithm for Land PEATE reprocess Collection 1.1, including <u>DNB Stray Light Correction algorithm and</u> <u>smoothed fitting functions</u>.
 - Apr 1, 2014: Latest LUTs update for Dec 2013, and Jan/Feb 2014.

Summary

- VIIRS has continued its nominal operation and calibration
 - No changes are made in sensor operation configurations
 - SD/SDSM, BB WUCD, and lunar calibration activities are regularly performed
 - Changes in sensor response are accurately tracked by the OBC
 - Calibration LUTs are frequently updated
- Sensor overall performance meets its design requirements
 - VIIRS SDR maturity has reached the "Validated" status
- Dedicated calibration effort remains critically important to assure SDR quality
 - The modulated RSRs, as a result of mirror degradation, have been developed and applied to sensor SDR calibration and data production
 - SDR impact due to newly identified solar vector error has be assessed and will be addressed in the future updates
 - Small solar and lunar calibration differences to be investigated

Operation and Calibration Activities

- Launch: 10/28/11
- Instrument turn-on: 11/8/11
- Nadir door open: 11/21/11 (first image from VIS/NIR)
- RTA stow (4 times): 12/9/11 1/2/12
- Cryo-cooler door open: 1/18/12 (observations from all bands)
- Roll maneuvers: started from 1/4/12 (Lunar calibration)
- Yaw maneuvers; 2/15/12 2/16/12 (SD/SDSM screen transmission)
- Pitch maneuvers: 2/20/12 (TEB response versus scan angle)
- OBC calibration activities: SD, SDSM, and BB

Product Maturity Definition

• Beta (L+150) – April 05, 2012

- Early release product, initial calibration applied, minimally validated and may still contain significant errors
- Available to allow users to gain familiarity with data formats and parameters
- Product is not appropriate as the basis for quantitative scientific publications studies and applications

• Provisional (Beta+2mo) – October 24, 2012

- Product quality may not be optimal
- Incremental product improvements are still occurring as calibration parameters are adjusted with sensor on-orbit characterization
- General research community is encouraged to participate in the QA and validation of the product, but need to be aware that product validation and QA are ongoing
- Users are urged to contact NPP Cal/Val Team representatives prior to use of the data in publications
- Validated/Calibrated (L+1 yr) December 19, 2013
 - On-orbit sensor performance characterized and calibration parameters adjusted accordingly
 - Ready for use by the Centrals, and in scientific publications
 - There may be later improved versions
 - There will be strong versioning with documentation

Major IDPS SDR Code/LUTs Update Timeline (Radiometric)

