CERES FM6
Calibration Subsystem Performance Issues

Kory Priestley  -  Project Scientist
Audra Bullock  -  Chief Engineer

CERES Science Team Meeting
Scripps
October 29, 2013
Discussion Topics

- CERES Instrument
  - Description
- Radiation Budget Instrument Procurement Status
- Issues uncovered during FM6 ground calibration (May 2012)
  - Solar Diffuser non-uniformity
  - SWICS Lamp instability
  - SWICS Reference Detector instability
- Recovery Status
- Programmatic
  - Schedule/Workplan
**CERES Instrument**

- Designed, manufactured and tested by TRW, Redondo Beach, CA (currently Northrop Grumman Aerospace Systems)
- Contains three sensor assemblies with cassegrain optics and thermistor bolometer detectors
- Sensors measure thermal radiation in the near-visible through far-infrared spectral region
- Sensor channels are coaligned and mounted on a spindle that rotates about the elevation axis
- Hemispherical sampling obtained with an azimuthal axis drive system

### Orbits
- 705 km altitude, 10:30 a.m. descending node (Terra) or 1:30 p.m. ascending node (PM-1), sun-synchronous, near-polar; 350 km altitude, 35° inclination (TRMM)

### Spectral Channels
- Solar Reflected Radiation (Shortwave): 0.3 - 5.0 µm
- Window: 8 - 12 µm, 5 – 40 µm (FM6)
- Total: 0.3 to > 100 µm

### Swath Dimensions
- Limb to limb

### Angular Sampling
- Cross-track scan and 360° azimuth biaxial scan

### Spatial Resolution
- 20 km at nadir (10 km for TRMM, 28 km for NPP)

### Mass
- 45 kg

### Duty Cycle
- 100%

### Power
- 45 W

### Data Rate
- 10 kbps

### Size
- 60 x 60 x 70 cm (deployed)

### Design Life
- 6 years
We now have over 51 years of flight experience with the CERES instruments
RBI is intended to be a continuity measurement for the CERES observations

Request For Proposal (RFP) may be found at: https://www.fbo.gov, keyword is RBI.

- Final RFP released in June 2012
- Proposals received September 2013
- Evaluation of proposals underway
- Contract award anticipated Spring 2014

<table>
<thead>
<tr>
<th>Radiometric Accuracy</th>
<th>CERES (k = 1)</th>
<th>RBI (k = 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Channel</td>
<td>Larger of 0.575 W/m²-sr or 0.5%</td>
<td>Larger of 0.575 W/m²-sr or 0.5%</td>
</tr>
<tr>
<td>Shortwave Channel</td>
<td>Larger of 0.75 W/m²-sr or 1.0-%</td>
<td>Larger of 0.75 W/m²-sr or 1.0%</td>
</tr>
<tr>
<td>Longwave Channel</td>
<td>Larger of 0.75 W/m²-sr or 0.5%</td>
<td>Larger of 0.75 W/m²-sr or 0.5%</td>
</tr>
</tbody>
</table>
The CERES FM6 Team continues to pursue resolution of three issues:

1. Solar Diffuser Mirror Attenuator Mosaic (MAM) scatter non-uniformity
2. Internal Calibration Module (ICM) lamp brightening
3. Internal Calibration Module (ICM) reference detector photodiode (PD) response decrease

In May of 2012, FM6 had completed its baseline calibration with the following open issues:

- SWICS lamp appears to have increased in brightness throughout the calibration campaign whereas the source monitor photodiode indicated a decrease in source output throughout the calibration campaign.
- Data from MAM scatter testing indicate spatial non-uniformity of >4.5% vs. 1.5% measured at component level.
- If not resolved, CERES FM-6 will not meet its on-orbit SW channel performance accuracy requirements.

Root cause has been identified for all items, workarounds complete, instrument completing Assembly and integration.
Performance Resolution Approach

ICM Resolution (Complete)

- Isolate Performance Problems
  - ICM Vacuum Test determined the Lamp and PD performance issues are confined to the ICM
  - ICM Diagnostic Test to further isolate performance issues
- Select replacement flight Lamp and PD from CERES parts

MAM Resolution (Complete)

- Isolate Performance Problem
  - Diamond-Turned Tooling marks have been identified as the source of MAM performance issue
- Select replacement flight MAM from CERES heritage MAMs
  - Pre-condition MAM using AO asher from GRC
- Verify ICM performance in vacuum (Complete)
- Verify Instrument Performance (January 2013)
- Conduct SAR/PSRR (April 2013)
CERES FM6 Instrument Status

♦ CERES FM6 Calibration subsystem issues:
  1. Solar Diffuser Mirror Attenuator Mosaic (MAM) scatter non-uniformity
  2. Internal Calibration Module (ICM) lamp brightening
  3. Internal Calibration Module (ICM) photodiode reference detector response decrease

2 MAMs installed in CERES Instrument: SW & Total
CERES FM6 MAM Overview

- Mirror Attenuator Mosaics (MAMs) **diffuse** and **attenuate** incident solar energy so that the CERES Shortwave and Total Channels are presented with repeatable, on-scale radiance scenes over the range of incident angles experienced during periodic, on-orbit, solar calibrations.

- MAMs fabricated for FM6 are different than prior flight units
  - Substrate is Diamond Turned Aluminum vs. Electroformed Nickel
  - Coatings updated for improved resistance to Atomic Oxygen

- Why did we change Fab process?
  - Diamond turned aluminum substantially easier to fabricate than electroformed nickel and electroform/grinding process has low yield ~25%.

MAM Goal

minimize variability in reflected solar energy over all incident angles

CERES MAM Assembly
MAM Scatter Uniformity Issue
(Instrument Level Testing)

Uniformity Requirement ±1% over 4.5° Solar Angle

Two contributors identified:
• Solar Simulator non-uniformity
• Diamond-turning resulted in fringed scatter pattern

Diamond-turned MAM
Electroform MAM
Lesson Learned:
The diamond-turning process is plagued with issues of tooling marks.

Diamond-turned MAM
Tooling marks cause fringed scatter

Electroformed MAM
Scatter is much more uniform
NG located 2 legacy MAMs of the FM4 vintage
- Parts removed from flight status in late 90’s for surface blemishes
- Parts bagged and stored in controlled environment during interim

Scatter uniformity meets requirements with margin

AO coating susceptibility corrected
- LaRC & NG collaborated with GRC to fully oxidize protective coating (Complete)

MAMs upscreened and ready for installation 3 weeks ahead of schedule
- Coating adhesion testing (Complete)
- Component scatter test post AO exposure (Complete)
CERES FM6 Instrument Status

♦ CERES FM6 Calibration subsystem issues:

1. Solar Diffuser Mirror Attenuator Mosaic (MAM) scatter non-uniformity

2. **Internal Calibration Module (ICM) lamp brightening**

3. **Internal Calibration Module (ICM) photodiode reference detector response decrease**
**CERES Internal Calibration Module**

**ICM contains 2 subassemblies**

**Shortwave Internal Calibration Source (SWICS):**
- Lamp and focusing optics
- Reference Detector
- Folding Mirror

**Internal BlackBody (IBB):**
- Concentric grooved blackbodies
- Heaters and PRTs

*During Calibration we view the SWICS lamp with two independent detectors*

**CERES SW sensor and Reference Photodiode**

**Instrument vacuum calibration results:**
- Shortwave sensor stability verified independently
- Shortwave sensor indicated SWICS brightening
- Reference photodiode indicated SWICS dimming
CERES ICM SWICS Layout & Function

- SW channel views lamp via protected aluminum-coated fold mirror
- PD views tungsten filament lamp via hole in fold mirror through band pass filter (700nm-800nm) mounted in front of the PD can (Note: PD spatially and spectrally subsamples the SWICS calibration lamp)
- Lens & diffuser (grit-blasted on flat side) distribute light across mirror
Instability of SWICS Lamp and Photodiode (Instrument Level Testing)

The trends in the data below should be consistent or preferably flat.

Light Source: SWICS Lamp
Detector: CERES SW Channel
Conclusion: SWICS Lamp appears to be getting brighter

Light Source: SWICS Lamp
Detector: SWICS Photodiode Reference Detector
Conclusion: Photodiode Response Decreasing

- ICM removed from instrument and tested under vacuum (Oct 2012, Jan 2013)
- Module-level test results consistent with instrument-level calibration (FM6 Instrument exonerated)
- Shifts with temperature are artifact of sensor and BB heater drive ground bias effect
- PD Data uncorrected for apparent source drift
- PD Response Drift Rate is a function of Instrument Temperature
The trends in the SW channel and monitor PD measurements should be consistent or preferably flat. SW channel can be independently verified during calibration. PD can only be illuminated by the SWICS lamp within the ICM.

Thermally Corrected FM6 Instrument-Level Calibration Data

Stability Requirement over 5 year mission

Hot Accept: ~ 24 C
Cold Accept: ~ -3 C
Flight Nominal: ~ 11 C
Translucent DC93-500 in SWICS lamp assembly is a critical part of the optical path.
**SWICS Ray Trace Model Con’t**

*Rays emitted from the back of the filament scatter forward into the SWICS optical train from the flat surface behind the bulb housing*

Because of the location of the flat surface with respect to the lenses, more light scattered from the flat surface reaches the SWICS PD than the SW sensor.

Because of the spatial sub-sampling, the ratio of forward to backward scattered light reaching the PD is 5 times greater than that reaching the SW sensor.
Because of the spectral transmission differences, the amount of light scattered through the RTV and into the FOV of each detector is different and highly dependent on the path length through the RTV.

**Narrowband PD measures 700nm to 800nm**
**Broadband SW sensor measures 300nm to > 3μm**

Material transmission changes due to outgassing under vacuum could have a larger impact on the PD because of the spectrally narrow sub sampling.

Combined with the larger fractional content of light propagating through the RTV that contributes to the overall signal at the PD, evidence points to this as root cause for the ICM instability.
Issues Contributing to Root Cause

Reflectance change due to voids at bond glass/RTV and RTV/Al interface

N_{VAC} = 1.00

N_{glass} = 1.5

N_{RTV} = 1.41

Debond may cause Total Internal Reflection (TIR) -- Reflection = 100%

2^{nd} surface reflection causes 4\% increase in light output

Voids diffuse at Hi Vac, specular reflectance drops, diffuse reflectance increases, Total Light from bulb drops

Note: Temp increase tends to shrink voids due to thermal expansion
Mounting of the lamp in Assembly identified as Root Problem

- Translucent DC93-500 in SWICS lamp assembly is a critical part of the optical path.
- Solution to the problem is to “blacken” the material around the bulb from clear silicone to black silicone.
SWICS Lamp Assembly: Black RTV Option

Heritage mount with black RTV
- Use existing housing
- Straightforward material change
- Material options: NuSil SCV-2590-2 & CV-2289-2
Root Cause Summary for ICM SWICS Instability

Because of the location of the flat surface with respect to the lenses, more of this light reaches the SWICS PD than the SW Sensor (focused light is obscured by the secondary mirror of the SW telescope).

- Translucent DC93-500 is a significant optical element in the lamp assembly that changes with temperature
- Reflections off the back plane of the lamp housing constitute nearly half of the PD signal, but are mostly obscured by the telescope on the SW Sensor
- Changes in the RTV material/optical properties under vacuum cause a slow degradation of the total reflectance of light in the lamp housing
- Blackening the medium surrounding the bulb solves the SWICS instability

Translucent RTV is a Significant Optical Element

Image of SWICS Lamp in ICM

Reflectance changes due to void transformation and changes in bonding at glass/RTV and RTV/AI interface

Debond causes Total Internal Reflection (TIR)

Diffuse Reflection Where voidless

N_{vac} = 1.00
No_{glass} = 1.5
N_{RTV} = 1.41

2nd surface reflection causes 4% increase in light output

Voids diffuse at high Vac, specular reflectance drops, diffuse reflectance increases, total light from lamp assembly drops

Note: Temp increase tends to shrink voids due to thermal expansion
## CERES FM6 Top Level Schedule & Critical Path

### Milestones

<table>
<thead>
<tr>
<th>MAM &amp; ICM Resolution</th>
<th>FY12 Q3</th>
<th>FY12 Q4</th>
<th>FY13 Q1</th>
<th>FY13 Q2</th>
<th>FY13 Q3</th>
<th>FY13 Q4</th>
<th>FY14 Q1</th>
<th>FY14 Q2</th>
<th>FY14 Q3</th>
<th>FY14 Q4</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>MAM and ICM Milestones</strong></td>
<td></td>
</tr>
<tr>
<td>Original MAM Testing</td>
<td></td>
</tr>
<tr>
<td>Receive Solar Simulator ND Filter</td>
<td>8/28/12</td>
<td>12/6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAM Scatter Uniformity Test Complete</td>
<td></td>
</tr>
<tr>
<td>MAM Decision Gate</td>
<td></td>
</tr>
<tr>
<td>MAM Decision Gate: Good MAMs? (NO) AO Exp.</td>
<td></td>
</tr>
<tr>
<td>MAMs Available 2/18</td>
<td></td>
</tr>
<tr>
<td>Instrument Planning Start</td>
<td></td>
</tr>
<tr>
<td>Remove MAM Assembly</td>
<td></td>
</tr>
<tr>
<td>MAM Assembly</td>
<td></td>
</tr>
<tr>
<td>Design Complete</td>
<td></td>
</tr>
<tr>
<td>Flight ICM Vacuum Test</td>
<td>10/25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final Disassembly &amp; Inspection 3/22</td>
<td></td>
</tr>
<tr>
<td>Vacuum Test (3 PDs) Part A Complete</td>
<td></td>
</tr>
<tr>
<td>Vacuum Testing Complete/Selection Made</td>
<td></td>
</tr>
<tr>
<td>Testing Complete/Selection Made 10/30 (5/28)</td>
<td></td>
</tr>
<tr>
<td>Flight ICM Decision Point</td>
<td></td>
</tr>
<tr>
<td>Flight PD Screening &amp; Qual</td>
<td></td>
</tr>
<tr>
<td>Begin Fab of Candidate Flight PD Assemblies</td>
<td>12/20</td>
<td>1/24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vacuum Testing Part B Start 4/29</td>
<td></td>
</tr>
<tr>
<td>Fabricate Candidates</td>
<td></td>
</tr>
<tr>
<td>Calibrate Candidate Flight PD Assembly</td>
<td></td>
</tr>
<tr>
<td>Vacuum Testing 2/28</td>
<td></td>
</tr>
<tr>
<td>PD &amp; Lamp Install in ICM Start 10/31 (6/12)</td>
<td></td>
</tr>
<tr>
<td>Start Install ICM into FM6 Instrument 12/3</td>
<td></td>
</tr>
<tr>
<td>Vibe Comp. 12/19 (7/16)</td>
<td></td>
</tr>
<tr>
<td>EMC Comp. 1/22 (8/8)</td>
<td></td>
</tr>
<tr>
<td>Flight ICM Vacuum Test</td>
<td></td>
</tr>
<tr>
<td>Test Flight ICM &amp; MAM w/ Instrument</td>
<td></td>
</tr>
<tr>
<td>System Acceptance Review</td>
<td></td>
</tr>
</tbody>
</table>

### Rebaselined Dates

- **SAR Sept 2013:** SAR forecast date is April 2014

*Note: Rebaselined dates are in parentheses below month-end forecasted dates for remaining milestones*
# Milestone Tracking/Forecast

(all dates shown are completion dates)

## ICM (In-Flight Calibration Module)

<table>
<thead>
<tr>
<th>Task Completion Dates</th>
<th>ETC#3 &amp; delta-EMC revised baseline (May 2013)</th>
<th>Current NGAS Forecast</th>
</tr>
</thead>
<tbody>
<tr>
<td>PD assembly okay for flight</td>
<td>28 May</td>
<td>Complete (22 Oct)</td>
</tr>
<tr>
<td>Lamp assembly okay for flight</td>
<td>28 May</td>
<td>Complete (22 Oct)</td>
</tr>
<tr>
<td>Lamp/PD Final Install &amp; Re-assemble ICM</td>
<td>12 Jun</td>
<td>7 Nov</td>
</tr>
<tr>
<td>ICM Limited TV test</td>
<td>27 Jun</td>
<td>20 Nov</td>
</tr>
<tr>
<td>ICM FM6 install &amp; Checkout</td>
<td>8 Jul</td>
<td>29 Nov</td>
</tr>
</tbody>
</table>

## Instrument Test Campaign

<table>
<thead>
<tr>
<th>Task Completion Dates</th>
<th>May 2013 revised baseline</th>
<th>Current NGAS Forecast</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFT (Comprehensive Functional Test)</td>
<td>11 Jul</td>
<td>2 Dec</td>
</tr>
<tr>
<td>Delta PER (Pre-Environmental Review)</td>
<td>12 Jul</td>
<td>4 Dec</td>
</tr>
<tr>
<td>Vibration Test</td>
<td>18 Jul</td>
<td>11 Dec</td>
</tr>
<tr>
<td>Post Vibe Alignment Check</td>
<td>25 Jul</td>
<td>17 Dec</td>
</tr>
<tr>
<td>EMC</td>
<td>8 Aug</td>
<td>13 Jan</td>
</tr>
<tr>
<td>TVAC/ICM Performance</td>
<td>19 Sept</td>
<td>26 Feb</td>
</tr>
<tr>
<td>SAR/PSRR</td>
<td>7 Oct</td>
<td>31 Mar</td>
</tr>
</tbody>
</table>

**Note:** NGAS schedule is based on a 9/80 work week for all activities other than vacuum testing

Following completion of the instrument level TVAC/ICM Performance test in the NGAS RCF chamber, instrument removal and a post-TVAC/ICM Performance CFT, 15 work days are planned for preparation for the SAR event.